Skip to main content
Log in

First-principles calculations for optoelectronic properties of AlSb and GaSb under influence of spin–orbit interaction effect

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this article, we present the first-principles calculations for electronic and optical properties of AlSb and GaSb in the zinc blende phase using density functional theory. These calculations were carried out using the full potential-linearized augmented plane wave method embedded in WIEN2K package. Perdew–Burke–Ernzerhof and modified Becke–Johnson approximations with and without addition of spin–orbit interaction (SOI) effect were taken as exchange-correlation potentials. With SOI effect, we found that AlSb has an indirect bandgap (Г − Δmin) of 1.66 eV and GaSb has a direct bandgap (ГГ) of 0.812 eV. These results are in good agreement with experimental data and are far better than the theoretical results published elsewhere. We also calculated the dielectric functions, refractive indexes, reflectivities, energy loss functions, optical conductivities and absorption coefficients as a function of frequency in order to investigate the optical responses of AlSb and GaSb. Also, the calculated critical point energies with SOI effect are consistent with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D V Khanin and S E Kul-kova J Russ. Phys.48 70 (2005)

    Article  ADS  Google Scholar 

  2. M Briki, M Abdelouhab, A Zaoui and M Ferhat Superlattices and Microstruct.45 80 (2009)

    Article  ADS  Google Scholar 

  3. B R Bennett and R A Soref IEEE J. Quantum Electron.23 2159 (1987)

    Article  ADS  Google Scholar 

  4. Y S Kim, M Marsman and G Kresse Phys. Rev. B.82 205212 (2010)

    Article  ADS  Google Scholar 

  5. S H Rhim, M Kim and A J Freeman Phys. Rev. B. 71 045202(2005)

    Article  ADS  Google Scholar 

  6. G Rehmen, M S Saifullah, R Ahmad, S J Asadabadi, M Maqbool, I Khan, H R Aliabad and I Ahmad J. Electron. Mater.45 3314 (2016)

    Article  ADS  Google Scholar 

  7. S Q Wang and H Q Ye J. Phys. Condens. Matter.14 9579 (2002)

    Article  ADS  Google Scholar 

  8. R Ahmed, Fazal-e-Aleem, S J Hashemifar, H Rashid and H Akbarzadeh Commun. Theor. Phys.52 527 (2009)

    Article  ADS  Google Scholar 

  9. T Borca-Tasciuc, D Achimov, W L Liu, G Chen, H W Ren, C H Lin and S S Pie Microscale Thermophys. Eng.5 225 (2001)

    Article  Google Scholar 

  10. E E Castaño-González, N Seña, V Mendoza-Estrada, R González-Hernández, A Dussan, and F Mesa Semiconductors50 1280 (2016)

    Article  ADS  Google Scholar 

  11. H A Tahini, A Chroneos, S T Murphy, U Schwingenschlogl and R W Grimes J. Appl. Phys.114 063517 (2013)

    Article  ADS  Google Scholar 

  12. N Liu, G Y Gao, J B Liu and K L Yao Comput. Mater. Sci.95 557 (2014)

    Article  Google Scholar 

  13. N Liu, G Y Gao, J B Liu, and K L Yao Phys. B: Condens. Matter.405 1663 (2010)

    Article  ADS  Google Scholar 

  14. R C Weast, D R Lide, M J Astle and W H Beyer CRC Handbook of Chemistry and Physics 70th edition (Boca Raton, Florida: CRC) (1990)

    Google Scholar 

  15. K A Johnson and N W Ashcroft Phys. Rev. B.58 15548 (1998)

    Article  ADS  Google Scholar 

  16. G W Gobeli and F G Allen Phys. Rev. B.137 245(1965)

    Article  ADS  Google Scholar 

  17. R Braunstein and E O Kane J. Chem. Phys.23 1423 (1962)

    Google Scholar 

  18. I N Remediakis and E Kaxiras Phys. Rev. B59 5536 (1999)

    Article  ADS  Google Scholar 

  19. P Y Yu and M Cardona Fundamentals of Semiconductor 3rd Edition (Berlin: Springer) (2010)

  20. J Spitzer, A Hijpner, M Kuball, M Cardona, B Jenichen, H Neuroth, B Brar and H Kroemer J. Appl. Phys.77 811 (1995)

    Article  ADS  Google Scholar 

  21. S Zollner, G Lin, E Schonherr, A Bohringer and M Cardona J. Appl. Phys.66 383 (1989)

    Article  ADS  Google Scholar 

  22. S Adach Phys. Rev. B.3912612 (1989)

    Article  ADS  Google Scholar 

  23. D E Aspnes and A A Studna Phys. Rev. B27 985 (1983)

    Article  ADS  Google Scholar 

  24. M Muñoz, K Wei, F H Pollak, J L Freeouf and G W Charache Phys. Rev. B60 8105 (1999)

    Article  ADS  Google Scholar 

  25. A D Corso, F Mauri and A Rubio Phys. Rev. B.53 15638 (1996)

    Article  ADS  Google Scholar 

  26. M J Lucero, T M Henderson and G E Scuseria J. Phys. Condens Matter.24 145504 (2012)

    Article  ADS  Google Scholar 

  27. Y Hinuma, A Gruneis, G Kresse and F Oba Phys. Rev. B.90 155405 (2014)

    Article  ADS  Google Scholar 

  28. F E H Hassan and A V Postnikov J. Alloys and Compds.504 559 (2010)

    Article  Google Scholar 

  29. A P Gazhulina and M O Maryche J. Alloys and Compds.623 413(2015)

    Article  Google Scholar 

  30. S Drablia, H Meradji, S Ghemid, S Labidi and B Bouhafs Phys. Scr.79 045002 (2009)

    Google Scholar 

  31. M J Puska, P Lanki and R M Nieminen J. Phys. Condence Matter.1(35) 6081 (1989)

    Article  ADS  Google Scholar 

  32. C B Geller, W Wolf, S Picozzi, A Continenza, R Asahi, W Mannstadt, A J Freeman and E Wimmer Appl. Phys. Lett.79 368(2001)

    Article  ADS  Google Scholar 

  33. S Tomic, B Montanari and N M Harrison Phys. E40 2125 (2008)

    Article  Google Scholar 

  34. M Z Huang and W Y Ching Phys. Rev. B.47 9449 (1993)

    Article  ADS  Google Scholar 

  35. S A Khandy, I Islam, D C Gupta, A Laref Int. J Energy Res.42 4221 (2018)

    Article  Google Scholar 

  36. S A Khandy and D C Gupta RSC Adv.6 48009 (2017)

    Article  Google Scholar 

  37. S A Khandy Mater. Res. Express. 5 056516 (2018)

    Article  ADS  Google Scholar 

  38. S A Khandy and D C Gupta Semicond. Sci. Technol.32 125019 (2017)

    Article  ADS  Google Scholar 

  39. S A Khandy and D C Gupta J Elec. Mater.46 5531 (2017)

    Google Scholar 

  40. R Ali, G J Hou, Z G Zhu, Q B Yan, Q R Zheng and G Su Chem. Mater.30 718 (2018)

    Article  Google Scholar 

  41. R Ali, G J Hou, Z G Zhu, Q B Yan, Q R Zheng and G Su J. Mater. Chem. A6 9220 (2018)

    Article  Google Scholar 

  42. P Blaha, K Schwarz, G K H Madsen, D Kvasnicka and J Luitz WIEN2K An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Vienna, Austria: Vienna University of Technology) (2002)

    Google Scholar 

  43. K M Wong, S M Alay-e-Abbas, Y Fang, A Shaukat and Y Lei J. Appl. Phys.114 034901 (2013)

    Article  ADS  Google Scholar 

  44. F Tran and P Blaha Phys. Rev. Lett.102 226401 (2009)

    Article  ADS  Google Scholar 

  45. M Hilal, B Rashid, S H Khan and A Khan J. Mat. Chem. Phys.184 41 (2016)

    Article  Google Scholar 

  46. M A Ali, A Khan, S H Khan, T Ouohrani, G Murtaza, R Khenata and S B Omran Mat. Sci. Semicond. Proc.38 57 (2015)

    Article  Google Scholar 

  47. A Delin, P Ravindran, O Eriksson and J M Wills Int. J. Quant. Chem.69 349 (1998)

    Article  Google Scholar 

  48. E Burstein, H Brodsky and G Lucousky Int. J. Quant. Chem.1 756 (1967)

    ADS  Google Scholar 

  49. S Adachi Phys. Rev. B35 7454 (1989)

    Article  ADS  Google Scholar 

  50. J Stuke and G Zimmerero Phys. Stat. Sol. B49 513 (1972)

    Article  ADS  Google Scholar 

  51. B Rashid, M Hilal, S H Khan and A Khan Mater. Sci. Semicond. Process.41 83 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Ali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, M.A., Aleem, H., Sarwar, B. et al. First-principles calculations for optoelectronic properties of AlSb and GaSb under influence of spin–orbit interaction effect. Indian J Phys 94, 477–484 (2020). https://doi.org/10.1007/s12648-019-01489-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-019-01489-5

Keywords

PACS Nos.

Navigation