Skip to main content
Log in

First-principle calculations to investigate structural, electronic, mechanical, optical, and thermodynamic features of promising (La, In)-doped AlSb for optoelectronic applications

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

A remarkable change in lattice parameters and bulk modulus is achieved by the suitable addition of Al (Al1-x Lax Sb) and In (Al1-x Inx Sb) atoms in the AlSb compound. Electronic responses like band structure, the total partial density of states, and the elemental density of states are thoroughly investigated. The computed values indicate that the binary compound AlSb is an indirect band gap and an optically inactive response. After increasing the doping concentrations (0.25, 0.5, 0.75) of La and In in AlSb, the band gap changes from indirect to direct nature. Hence, Al1-0.75 La0.25 Sb, Al1-0.50 La0.50 Sb, Al1-0.75 In0.25Sb, and Al1-0.50 In0.50Sb become optically active. The illustrious roles of Al-3p and In-4d states on the band gap and nonlinear responses of these compounds are extensively explored by the comparison between the computed results of ultra-soft and norm converging pseudopotentials. The excess specific heat (CV), enthalpy of mixing (Hm), and phonon dispersion curves resulting from the concentrations “x” are estimated in order to investigate the thermodynamic stability responses of the pristine and doped AlSb. The obtained CV and thermal coefficient statistics for Al1-x Lax Sb and Al1-x Inx Sb may be useful for a good mapping of experimental results and examining these compounds’ enharmonic responses. There is a valuable change in optical characteristics like dielectric functional, absorption, conductivity, and refractive index due to the addition of (La, In) impurities in AlSb. It is further observed that Al1-0.75 La0.25 Sb, Al1-0.50 La0.50 Sb, Al1-0.75 In0.25Sb, and Al1-0.50 In0.50Sb are significantly mechanically stable compared to pristine AlSb. The above results suggest that Al1-x Lax Sb and Al1-x Inx Sb are high-performance optical materials and can be promising potential candidates for optoelectronic applications.

Methods

The structural, electronic, mechanical, vibrational, and optical responses of the pure and doped Al1-0.75 La0.25 Sb, Al1-0.50 La0.50 Sb, Al1-0.75 In0.25Sb, and Al1-0.50 In0.50Sb are investigated, using Heydscuseria-Ernzerhof screened hybrid functional (HSEO6) and generalized gradient approximation (GGA) with norm-converging and ultra-soft pseudopotential techniques in the density functional theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

BS:

Band structure

PDOS:

Partial density of state

TDOS:

Total density of state

EPDOS:

Elemental partial density of state

DF:

Dielectric function

RI:

Refractive index

References

  1. Ivanov SV Kop’ev PS (2019) Type-II (AIGa) Sb/InAs Quantum Well Structures and Superlattices for Opto and Microelectronics Grown by Molecular Beam Epitaxy. In Antimonide-Related Strained-Layer Heterostructures pp 95–170

  2. Sweeney SJ, Eales TD, Marko IP (2020) The physics of mid-infrared semiconductor materials and heterostructures. Mid-infrared Optoelectronics pp 3–56

  3. Detchprohm T, Ryou JH, Li X, Dupuis RD (2019) Future aspects of MOCVD technology for epitaxial growth of semiconductors. Metalorganic Vapor Phase Epitaxy (MOVPE) Growth, Materials Properties, and Applications pp 507–548

  4. Vadiee E (2019) Design, growth, and characterization of III-Sb and III-N materials for photovoltaic applications. Arizona State University

  5. Baranets S et al (2022) On the effects of aliovalent substitutions in thermoelectric Zintl pnictides. varied polyanionic dimensionality and complex structural transformations─ the case of Sr3ZnP3 vs Sr3Al x Zn1–x P3. Chem Mater 34(9):4172–4185

    CAS  Google Scholar 

  6. Benchehima M et al (2018) Optoelectronic properties of aluminum bismuth antimony ternary alloys for optical telecommunication applications: first principles calculation. Comput Mater Sci 155:224–234

    CAS  Google Scholar 

  7. Moin M, Anwar AW, Ahmad MA, Ali A, Mehrunisa (2023) Computational Comparative Analysis of (Ag, In)-Doped LaAlO3 for Optoelectronic Application: A First-Principles Study. Journal of Electronic Materials pp 1–16

  8. Hoat D, Silva JR, Blas AM (2018) First principles study on structural, electronic and optical properties of Ga1− xBxP ternary alloys (x= 0, 0.25, 0.5, 0.75 and 1). Phys Lett A 382(29):1942–1949

    CAS  Google Scholar 

  9. Rehman G et al (2016) Electronic band structures of the highly desirable III–V semiconductors: TB-mBJ DFT studies. J Electron Mater 45:3314–3323

    CAS  Google Scholar 

  10. Cuadrado R, Cerdá JI (2012) Fully relativistic pseudopotential formalism under an atomic orbital basis:spin–orbit splittings and magnetic anisotropies. Journal of Physics: Condensed Matter 24(8)

  11. Shah D, Catellani A, Reddy H, Kinsey N, Shalaev V, Boltasseva A, Calzolari A (2018) Controlling the plasmonic properties of ultrathin TiN films at the atomic level. ACS Photonics 5(7):2816–2824

    CAS  Google Scholar 

  12. Hinkey RT et al (2011) Reflectance spectrum of plasmon waveguide interband cascade lasers and observation of the Berreman effect. J Appl Phys 110(4):043113

    Google Scholar 

  13. Sheerin E (2020) A study on the fabrication of seamless semiconducting and metallic nanowire networks and their applications for transparent electronics (Doctoral dissertation, Trinity College Dublin. School of Chemistry. Discipline of Chemistry)

  14. Pohl J, Klein A, Albe K (2011) Role of copper interstitials in CuInSe 2: first-principles calculations. Phys Rev B 84(12):121201

    Google Scholar 

  15. Rommel SL (2000) Silicon-based tunnel diodes for integrated circuit applications. 2000: University of Delaware 

  16. Long X, Zhang S, Wang F, Liu Z (2020) A first-principle perspective on electronic nematicity in FeSe.npj Quantum Materials 5(1):50

  17. Becker N, Dronskowski R (2016) A first-principles study on new high-pressure metastable polymorphs of MoO2. J Solid State Chem 237:404–410

    CAS  Google Scholar 

  18. Radiman S, Rusop M (2023) Investigation of structural and optical properties of In-doped AlSb nanostructures. Experimental and Theoretical Nanotech pp 49–76

  19. Lucero MJ, Henderson TM, Scuseria GE (2012) Improved semiconductor lattice parameters and band gaps from a middle-range screened hybrid exchange functional. J Phys: Condens Matter 24(14):145504

    CAS  PubMed  Google Scholar 

  20. Saßnick H-D, Cocchi C (2021) Electronic structure of cesium-based photocathode materials from density functional theory: performance of PBE, SCAN, and HSE06 functionals. Electron. Struct. 3(2):027001

    Google Scholar 

  21. Paier J (2016) Hybrid density functionals applied to complex solid catalysts: successes, limitations, and prospects. Catal Lett 146:861–885

    CAS  Google Scholar 

  22. Hoat D et al (2020) First principles insight into the structural, electronic, optical and thermodynamic properties of CsPb2Br 5 compound. Chem Phys 533:110704

    CAS  Google Scholar 

  23. Jaldurgam FF, Ahmad Z, Touati F (2021) Low-toxic, earth-abundant nanostructured materials for thermoelectric applications. Nanomater 11(4):895

  24. Nabi S et al (2022) Correlation between structural, electronic, and optical response of Ga-doped AlSb for optoelectronic applications: a first principle study. Eur Phys J B 95(3):55

    CAS  Google Scholar 

  25. Charifi Z, Reshak AH, Baaziz H (2008) Phase transition of LaX (X= P, As, Sb and Bi) at high pressure: theoretical investigation of the structural and electronic properties. Solid State Commun. 148(3–4):139–144

    CAS  Google Scholar 

  26. Vaitheeswaran G, Kanchana V, Rajagopalan M (2002) Electronic and structural properties of LaSb and LaBi. Phys B 315(1–3):64–73

    CAS  Google Scholar 

  27. Zevalkink A et al (2011) Ca 3 AlSb 3: an inexpensive, non-toxic thermoelectric material for waste heat recovery. Energy Environ Sci 4(2):510–518

    CAS  Google Scholar 

  28. Fan X et al (2007) A direct first principles study on the structure and electronic properties of Be x Zn 1–x O. Appl Phys Lett 91(12):121121

    Google Scholar 

  29. Moussa R et al (2021) First principles calculation of the structural, electronic, optical and elastic properties of the cubic AlxGa1-xSb ternary alloy. Opt Mater 113:110850

    CAS  Google Scholar 

  30. Han G et al (2020) Effect of local strain energy to predict accurate phase diagram of III–V pseudobinary systems: case of Ga (As, Sb) and (In, Ga) As. J Phys D Appl Phys 54(4):045104

    Google Scholar 

  31. Annane F, Meradji H, Ghemid S, Bendjeddou H, Hassan FEH, Srivastava V, Khenata R (2020) Ab-initio study of ordered III–V antimony-based semiconductor alloys GaP _ 1-x Sb _ x and AlP _ 1-x Sb _ x GaP 1-x Sb x and A l P 1-x Sb x. Pramana 94:1–16

  32. Pawar P, Singh S (2019) Structural and elastic behavior of aluminum pnictides with temperature effect. Int J Mod Phys B 33(30):1950365

    CAS  Google Scholar 

  33. Hor Y et al (2009) p-type Bi 2 Se 3 for topological insulator and low-temperature thermoelectric applications. Phys Rev B 79(19):195208

    Google Scholar 

  34. Annane F et al (2020) Ab-initio study of ordered III–V antimony-based semiconductor alloys GaP _ 1–x Sb _ x and AlP _ 1–x Sb _ x GaP 1–x Sb x and A l p 1–x Sb x. Pramana 94:1–16

    Google Scholar 

  35. Tütüncü HM, Bagci S, Srivastava G (2007) Electronic, elastic and phonon properties of the rock-salt LaSb and YSb. J Phys: Condens Matter 19(15):156207

    Google Scholar 

  36. Charifi Z et al (2022) Characterization of quaternary Heusler alloys CoFeYGe (Y= Ti, Cr) with respect to structural, electronic, magnetic, mechanical, and thermoelectric features. Int J Energy Res 46(10):13855–13873

    CAS  Google Scholar 

  37. Tretiakova K, Nec Y (2023) Separable solutions to nonlinear anisotropic diffusion equation in elliptic coordinates. Phil Trans R Soc A 381(2245):20220077

    CAS  PubMed  Google Scholar 

  38. Liaw PK et al (2017) Computational design and performance prediction of creep-resistant ferritic superalloys. University of Tennessee, Knoxville, TN (United States)

    Google Scholar 

  39. Ledbetter HM, Reed RP (1973) Elastic properties of metals and alloys, I. Iron, nickel, and iron-nickel alloys. J Phys Chem Ref Data 2(3):531–618

    CAS  Google Scholar 

  40. Shao Y et al (2018) Design and mechanisms of asymmetric supercapacitors. Chem Rev 118(18):9233–9280

    CAS  PubMed  Google Scholar 

  41. Pan Y et al (2015) Vacancy induced brittle-to-ductile transition of Nb5Si3 alloy from first-principles. Mater Des 86:259–265

    CAS  Google Scholar 

  42. Miceli MF et al (2023) A preliminary technology readiness assessment of morphing technology applied to case studies. Biomimetics 8(1):24

    PubMed  PubMed Central  Google Scholar 

  43. Vasconcelos AA et al (2023) Zeolites: a theoretical and practical approach with uses in (bio) chemical processes. Appl Sci 13(3):1897

    CAS  Google Scholar 

  44. Na S et al (2017) Effects of spatial heterogeneity and material anisotropy on the fracture pattern and macroscopic effective toughness of Mancos Shale in Brazilian tests. J Geophys Res: Solid Earth 122(8):6202–6230

    Google Scholar 

  45. Lee S et al (2014) Resonant bonding leads to low lattice thermal conductivity. Nat Commun 5(1):3525

    PubMed  Google Scholar 

  46. Balakrishnan K, Alagarsamy S, Veerapandy V (2023) DFT investigations of structural stability and structure dependent physical behavior of SnO2 polymorphs. Physica B 654:414734

    CAS  Google Scholar 

  47. Thunis G, Hautier G, Rignanese GM, Charlier JC, Jacques P Electronic transport properties of thermoelectric Zintl compounds Ca 5 Al 2 Sb 6 and Ca 3 AlSb 3

  48. Xiao P et al (2021) Revealing modification mechanism of Mg2Si in Sb modified Mg2Si/AZ91 composites and its effect on mechanical properties. J Alloy Compd 850:156877

    CAS  Google Scholar 

  49. Benchehima M et al (2017) Structural and optoelectronic properties of BxAl1-xSb ternary alloys: first principles calculations. Eur Phys J Appl Phys 77(3):30101

    Google Scholar 

  50. Amari S, Daoud S (2022) Structural phase transition, elastic constants and thermodynamic properties of TmAs: a DFT study. Comput. Condensed Matter 33:e00764

    Google Scholar 

  51. Babu KR et al (2011) Structural, thermodynamic and optical properties of MgF2 studied from first-principles theory. J Solid State Chem 184(2):343–350

    CAS  Google Scholar 

  52. Chowdhury A et al (2018) Predicted MAX phase Sc2InC: dynamical stability, vibrational and optical properties. Phys Status Solidi (b) 255(3):1700235

    Google Scholar 

  53. Babu KR, Lingam CB, Auluck S, Tewari SP, Vaitheeswaran G (2011) Structural, thermodynamic and optical properties of MgF2 studied from first-principles theory. J Solid State Chem 184(2):343–350

    CAS  Google Scholar 

  54. Lockwood D, Yu G, Rowell N (2005) Optical phonon frequencies and damping in AlAs, GaP, GaAs, InP, InAs and InSb studied by oblique incidence infrared spectroscopy. Solid State Commun 136(7):404–409

    CAS  Google Scholar 

  55. Nemiri O et al (2013) Structural, electronic, thermodynamic and thermal properties of zinc-blende InP, InAs and Their InAs x p 1–x ternary alloys via first principles calculations. Int J Mod Phys B 27(27):1350166

    Google Scholar 

  56. Daoud S, Bioud N, Saini P (2019) Finite temperature thermophysical properties of MgCu intermetallic compound from quasi-harmonic Debye model. J. Magnesium Alloys 7(2):335–344

    CAS  Google Scholar 

  57. Blanco M, Francisco E, Luana V (2004) GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model. Comput Phys Commun 158(1):57–72

    CAS  Google Scholar 

  58. Guo-Liang X et al (2009) First-principles calculation of elastic and thermodynamic properties of Ni2MnGa Heusler alloy. Chin Phys B 18(2):744

    Google Scholar 

  59. Vagnon F et al (2019) Effects of thermal treatment on physical and mechanical properties of Valdieri Marble-NW Italy. Int J Rock Mech Min Sci 116:75–86

    Google Scholar 

  60. Bokhan PA, Buchanov VV, Fateev NV, Kalugin MM, Kazaryan MA, Prokhorov AM, Zakrevskii DE (2006) Laser isotope separation in atomic vapor. John Wiley & Sons

  61. Essick JM, Mather RT (1993) Characterization of a bulk semiconductor’s band gap via a near-absorption edge optical transmission experiment. Am J Phys 61(7):646–649

    Google Scholar 

  62. Beard MC, Ellingson RJ (2008) Multiple exciton generation in semiconductor nanocrystals: toward efficient solar energy conversion. Laser Photonics Rev 2(5):377–399

    CAS  Google Scholar 

  63. Robert CR (2013) Study of III-V nanostructures on GaP for lasing emission on Si (Doctoral dissertation, INSA de Rennes)

  64. Nabi M, Gupta DC (2021) Small-band gap halide double perovskite for optoelectronic properties. Int J Energy Res 45(5):7222–7234

    CAS  Google Scholar 

  65. Ouadah O et al (2022) Probing the physical properties of boron nitride with randomly distributed vacancies: a promising semiconductor for optoelectronics. Solid State Commun 348:114744

    Google Scholar 

  66. Mochol I, Kirk JG (2013) Radiative damping and emission signatures of strong superluminal waves in pulsar winds. Astrophys J 776(1):40

    Google Scholar 

  67. Kana JK et al (2011) Thermally tunable optical constants of vanadium dioxide thin films measured by spectroscopic ellipsometry. Opt Commun 284(3):807–812

    Google Scholar 

  68. Poster DL et al (2021) Ultraviolet radiation technologies and healthcare-associated infections: standards and metrology needs. J Res Nat Inst Stand Technol 126:1–33

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Muhammad Moin, Dr. Abdul Waheed Anwar, and Dr. Ashfaq Ahmad researched about the material and worked on this project theoretically. Maria Yaseen, Dr. Usman Ilyas, Shafqat Nabi, and Anwar Ali assisted in graphical representations. Shahid Ali and Junaid Hassan edited the figures and tables of the manuscript.

Corresponding author

Correspondence to Abdul Waheed Anwar.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moin, M., Anwar, A.W., Ahmad, M.A. et al. First-principle calculations to investigate structural, electronic, mechanical, optical, and thermodynamic features of promising (La, In)-doped AlSb for optoelectronic applications. J Mol Model 29, 219 (2023). https://doi.org/10.1007/s00894-023-05622-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05622-4

Keywords

Navigation