Skip to main content

Advertisement

Log in

Optical absorption spectra of boron clusters Bn (n = 2–5) for application in nano scintillator – a time dependent density functional theory study

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Boron nano-clusters of various shapes and sizes have potential applications as scintillating detector and hydrogen storage material. Using time dependent density functional theory (TDDFT) as implemented in CASIDA we have studied the linear optical absorption spectra for boron clusters B n (n = 2–5) and compared with previously reported results using Hatree-Fock (H-F) based method where the spectrum is limited to 8 eV due to exclusion of excitation into very high energy unoccupied orbital. The optical spectra fall in the visible and near UV region and are very much dependent on the shape of the isomer. We have obtained additional peaks for B2 linear, B3 triangular, B4 rhombus and square shaped isomers beyond 8 eV which were missing in the previous H-F based study and has significance as they fall below the ionization potential. We correlate the optical spectrum with the shape of the Kohn-Sham orbitals and HUMO-LUMO gap and assess comparative stability of various B n (n = 2–5) clusters in terms of HUMO-LUMO gap, bond-length and relative energy. TDDFT computed optical spectroscopy correlated with Kohn-Sham orbitals and HUMO-LUMO gap and its comparison with H-F based method may give significant knowledge regarding geometry and optical properties of B n (n = 2–5) clusters enabling to distingush between various isomers of B n clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Driess, H. Nöth, Molecular Clusters of the Main Group Elements (Wiley-VCH, 2004)

  2. K.D. Sattler, Handbook of Nanophysics: Principles and Methods (CRC Press, 2011)

  3. F.A. Cotten et al., Advanced Inorganic Chemistry, 6th edn. (Wiley, 1999)

  4. I. Boustani, Chem. Modell. 8, 1 (2011)

    Article  Google Scholar 

  5. J.I. Aihara, H. Kanno, T. Ishida, J. Am. Chem. Soc. 127, 13324 (2005)

    Article  Google Scholar 

  6. L. Cheng, J. Chem. Phys. 136, 104301 (2012)

    Article  ADS  Google Scholar 

  7. T.B. Tai, D.J. Grant, M.T. Nguyen, D.A. Dixon, J. Phys. Chem. A 114, 994 (2010)

    Article  Google Scholar 

  8. T.B. Tai, N.M. Tam, M.T. Nguyen, Chem. Phys. Lett. 530, 71 (2012)

    Article  ADS  Google Scholar 

  9. M. Atis, C. Özdogan, B.Z. Güven, J. Quantum Chem. 107, 729 (2007)

    Article  ADS  Google Scholar 

  10. I. Boustani, Z. Zhu, D. Tomanek, Phys. Rev. B 83, 193405 (2011)

    Article  ADS  Google Scholar 

  11. H.J. Zhai, L.S. Wang, A.N. Alexandova, A.I. Boldyrev, J. Chem. Phys. 117, 7917 (2002)

    Article  ADS  Google Scholar 

  12. H.J. Zhai, L.S. Wang, A.N. Alexandova, A.I. Boldyrev, V.G. Zarkzewski, J. Phys. Chem. A 107, 9319 (2003)

    Article  Google Scholar 

  13. A.N. Alexandova, A.I. Boldyrev, H.J. Zhai, L.S. Wang, E. Steiner, P.W. Fowler, J. Phys. Chem. A 107, 1359 (2003)

    Article  Google Scholar 

  14. H.J. Zhai, B. Kiran, J. Li, L.S. Wang, Nat. Mater. 2, 827 (2003)

    Article  ADS  Google Scholar 

  15. A.P. Sergeeva, D.Y. Zubarev, H.J. Zhai, A.I. Boldyrev, L.S. Wang, J. Am. Chem. Soc. 130, 7244 (2008)

    Article  Google Scholar 

  16. A.N. Alexandova, A.I. Boldyrev, H.J. Zhai, L.S. Wang, J. Phys. Chem. A 108, 3509 (2004)

    Article  Google Scholar 

  17. L.L. Pan, J. Li, L.S. Wang, J. Chem. Phys. 129, 024302 (2008)

    Article  ADS  Google Scholar 

  18. A. Sergeeva, B.B. Averkiev, L.S. Wang, J. Chem. Phys. 134, 224304 (2011)

    Article  ADS  Google Scholar 

  19. W. Huang, A.P. Sergeeva, H.J. Zhai, B.B. Averkiev, L.S. Wang, A.I. Boldyrev, Nat. Chem. 2, 202 (2010)

    Article  Google Scholar 

  20. B. Kiran, S. Bulusu, H.J. Zhai, S. Yoo, X.C. Cheng, L.S. Wang, Proc. Natl. Acad. Sci. 102, 961 (2005)

    Article  ADS  Google Scholar 

  21. Z.A. Piazza, W.L. Li, C. Romanescu, A.P. Sergeeva, L.S. Wang, A.I. Boldyrev, J. Chem. Phys. 136, 104310 (2012)

    Article  ADS  Google Scholar 

  22. D.Y. Zubarev, A.I. Boldyrev, J. Comput. Chem. 28, 251 (2006)

    Article  Google Scholar 

  23. M.A.L. Marques, S. Botti, J. Chem. Phys. 123, 014310 (2005)

    Article  ADS  Google Scholar 

  24. S. Botti, A. Castro, N.N. Lathiotakis, X. Andrade, M.A.L. Marques, Phys. Chem. Chem. Phys. 11, 4523 (2009)

    Article  Google Scholar 

  25. R.H. Xie, G.W. Bryant, J. Zhao, T. Kar, V.H. Smith, Phys. Rev. B 71, 125422 (2005)

    Article  ADS  Google Scholar 

  26. L. Hanley, J.L. Whitten, S.L. Anderson, J. Phys. Chem. 92, 5803 (1988)

    Article  Google Scholar 

  27. L. Hanley, S.L. Anderson, J. Phys. Chem. 91, 516 (1987)

    Article  Google Scholar 

  28. L. Hanley, S.L. Anderson, J. Phys. Chem. 89, 2848 (1988)

    Article  Google Scholar 

  29. R. Shinde, A. Shukla, Nano Life 02, 1240004 (2012)

    Article  Google Scholar 

  30. K.B. Wiberg, A.E. de Oliveira, G. Trucks, J. Phys. Chem. A 106, 4192 (2002)

    Article  Google Scholar 

  31. E.R. Stratmann, G.E. Scuseriaa, J. Chem. Phys. 109, 19 (1998)

    Article  Google Scholar 

  32. J. Kohanoff, Electronic Structure Calculations for Solids and Molecules: Theory and Computational Methods (Cambridge University Press, 2006)

  33. G. Kresse, J. Hafner, Phys. Rev. B 47, R558 (1993)

    Article  ADS  Google Scholar 

  34. R. Baer, J. Mol. Struct.: Theochem. 19-21, 914 (2009)

    Google Scholar 

  35. M.E. Casida, in Recent Advances in Density Functional Methods, Part 1, edited by D.P. Chong (WorldScientific, Singapore, 1995)

  36. M.E. Casida, in Theoretical and Computational Chemistry, edited by J.M. Seminario (Elsevier, Amsterdam, 1996), Vol. 4, p. 11

  37. E.K.U. Gross, W. Kohn, Adv. Quantum Chem. 21, 255 (1990)

    Article  ADS  Google Scholar 

  38. M. Atis, C. Özdogan, Z.B.C. Güven, J. Quantum Chem. 107, 729 (2007)

    Article  ADS  Google Scholar 

  39. N. Akman, M. Tas, C. Özdogan, I. Boustani, Phys. Rev. B 84, 075463 (2011)

    Article  ADS  Google Scholar 

  40. Ba Tai Truong, Nguyen Minh Tam, Minh Tho Nguyen, Theor. Chem. Acc. 131, 1241 (2012)

    Article  Google Scholar 

  41. M.R. Provorse, B.F. Habenicht, C.M. Isborn, J. Chem. Theory Comput. 11, 4791 (2015)

    Article  Google Scholar 

  42. J. Rena, E. Kaxirasa and Sheng Men, Mol. Phys. 108, 1829 (2010)

    Article  ADS  Google Scholar 

  43. I. Boustani, Phys. Rev. B 55, 16426 (1997)

    Article  ADS  Google Scholar 

  44. I.A. Howard, A.K. Ray, Z. Phys. D. 42, 299 (1997)

    Article  ADS  Google Scholar 

  45. A.N. Alexandrova, A.I. Boldyrev, H.-J. Zhai, L.-S. Wang, Coordin. Chem. Rev. 250, 2811 (2006)

    Article  Google Scholar 

  46. W. Zhigang, R.E. Cohen, Phys. Rev. B, 70, 104112 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendra K. Shivade.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shivade, R., Chakraborty, B. Optical absorption spectra of boron clusters Bn (n = 2–5) for application in nano scintillator – a time dependent density functional theory study. Eur. Phys. J. B 89, 198 (2016). https://doi.org/10.1140/epjb/e2016-70341-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2016-70341-x

Keywords

Navigation