Skip to main content
Log in

Comprehensive analysis of the phase stability, optoelectronic, mechanical, thermodynamic, and vibrational properties for prospective optoelectronic applications of novel combinations of chalcogenides XScTe2 (X = Li, Rb) by employing density functional theory

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Optoelectronic devices are being extensively employed nowadays that are vital to diverse range of the appliances. The exploration of apposite materials for such efficient devices appears to be challenging. So, this study recommends novel combinations of chalcogenides as high energy materials that are seldom ever described. Here, density function theory (DFT) is employed to analyze the phase stability, optoelectronic, mechanical, thermodynamic, and vibrational properties of tellurium-based ternary chalcogenides XScTe2 (X = Li, Rb) by utilizing Perdew–Burke–Ernzerhof-generalized gradient approximation (PBE-GGA) and HSE06 through CASTEP simulation code. The observed minimum magnitude of free energy for these structures is found to be well-consistent with the stability requirements of the thermodynamics that confirms their chemical stability. The indirect energy band gap declares them semiconductors. Significant absorption is noticed in the ultraviolet (UV) range of the electromagnetic spectrum. The mechanical properties determined through Voigt–Reuss–Hill approximation determine mechanical instability due to the appearance of some negative elastic constants. Pugh’s ratios evaluated as larger than 1.75 while demonstrating its ductile nature. The comprehensive analysis of thermodynamic behavior declares that these are thermodynamically stable materials. The density functional perturbation theory (DFPT) delineates no imaginary frequencies signifying both these compounds as stable materials. The thorough examination suffices to identify these materials as effective ones for optoelectronic uses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

Availability of data and materials

The data that support the findings of this study are available on request from the corresponding author.

References

  1. McGarrigle EM, Myers EL, Illa O, Shaw MA, Riches SL, Aggarwal VK (2007) Chalcogenides as organocatalysts. Chem Rev 107:5841–5883. https://doi.org/10.1021/cr068402y

    Article  CAS  PubMed  Google Scholar 

  2. Stranks SD, Eperon GE, Grancini G, Menelaou C, Alcocer M, Leijtens T, Snaith HJ (2013) Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342(6156):341–344. https://doi.org/10.1126/science.1243982

    Article  CAS  PubMed  Google Scholar 

  3. Gratzel M (2014) The light and shade of perovskite solar cells. Nat Mater 13(9):838–842. https://doi.org/10.1038/nmat4065

    Article  CAS  PubMed  Google Scholar 

  4. Wuttig M, Bhaskaran H, Taubner T (2017) Phase-change materials for non-volatile photonic applications. Nat Photon 11(8):465–476. https://doi.org/10.1038/nphoton.2017.126

    Article  CAS  Google Scholar 

  5. Cahen D, Noufi R (1991) Surface passivation of polycrystalline, chalcogenide-based photovoltaic cells. Sol Cells 30(1–4):53–59. https://doi.org/10.1016/0379-6787(91)90037-P

    Article  CAS  Google Scholar 

  6. Azzouz L, Halit M, Allal A, Maabed S, Bouchenafa M, Ahmed R, Khenata R (2019) Structural electronic optical and elastic properties of layered rhombohedral compounds ALaSe2 (A= K, Rb) Insights from an ab initio study. Int J Mod Phys B 33(10):1–22. https://doi.org/10.1142/S021797921950084X

    Article  CAS  Google Scholar 

  7. Azzouz L, Halit M, Charifi Z, Baaziz H, Rérat M, Denawi H, Matta CF (2020) Magnetic semiconductor properties of RbLnSe2 (Ln= Ce, Pr, Nd, Gd) a density functional study. J Magn Mater 501:1–8. https://doi.org/10.1016/j.jmmm.2020.166448

    Article  CAS  Google Scholar 

  8. Bouchenafa M, Benmakhlouf A, Sidoumou M, Bouhemadou A, Maabed S, Halit M, Al-Douri Y (2020) Theoretical investigation of the structural, elastic, electronic, and optical properties of the ternary tetragonal tellurides KBTe2 (B= Al, In). Mater Sci Semicond Process 114:1–6. https://doi.org/10.1016/j.mssp.2020.105085

    Article  CAS  Google Scholar 

  9. Khan MS, Gul B, Khan G, Khattak SA, Ajaz M, Khan T, Zulfiqar S (2022) Exploring the exemplary electronic and optical nature in NaInX2 (X= S, Se and Te) ternary type chalcogenides materials: a GGA+ U and hybrid functionals study. J Solid State Chem 307:1–12. https://doi.org/10.1016/j.jssc.2021.122853

    Article  CAS  Google Scholar 

  10. Ma CG, Brik MG (2015) First principles studies of the structural, electronic and optical properties of LiInSe2 and LiInTe2 chalcopyrite crystals. Solid State Commun 203:69–74. https://doi.org/10.1016/j.ssc.2014.11.021

    Article  CAS  Google Scholar 

  11. Kosobutsky AV, Basalaev YM (2014) Electronic band structure of LiInSe2: a first-principles study using the Tran-Blaha density functional and GW approximation. Solid State Commun 199:17–21. https://doi.org/10.1016/j.ssc.2014.08.015

    Article  CAS  Google Scholar 

  12. Li LH, Li JQ, Wu LM (2008) Electronic structures and optical properties of wurtzite type LiBSe2 (B= Al, Ga, In): a first-principles study. J Solid State Chem 181(9):2462–2468. https://doi.org/10.1016/j.jssc.2008.05.047

    Article  CAS  Google Scholar 

  13. Benmakhlouf A, Bentabet A, Bouhemadou A, Maabed S, Benghia A, Khenata R, Bin-Omran S (2016) Structural, half-metallic magnetism and elastic properties of the KMnQ2 (Q= O, S, Se, Te) chalcogenides from first-principles calculations. J Magn Magn Mater 408:199–205. https://doi.org/10.1016/j.jmmm.2016.02.058

    Article  CAS  Google Scholar 

  14. Gassoumi A, Alfaify S, Nasr TB, Bouarissa N (2017) The investigation of crystal structure, elastic and optoelectronic properties of CuSbS2 and CuBiS2 compounds for photovoltaic applications. J Alloys Compd 725:181–189. https://doi.org/10.1016/j.jallcom.2017.07.141

    Article  CAS  Google Scholar 

  15. Khalil RMA, Hussain MI, Rana AM, Hussain F, Inam N, Somaily HH, Hayat S (2022) First principles study of the structural, optoelectronic and mechanical properties of XlaS2 (X=Cu, Zn) for optoelectronic applications. Optik 258:1–10. https://doi.org/10.1016/j.ijleo.2022.168940

    Article  CAS  Google Scholar 

  16. Azam A, Muhammad N, Murtaza G, Jafar N, Alshahrani T, Amin MA, Mahmood Q (2022) First principle study of structural, electronic, magnetic, optical and thermal properties of chalcogenides XfeSe2 (X= Li, Na and K) half-metallic compounds. Phys Scr 97(12):1–15. https://doi.org/10.1088/1402-4896/ac9ca7

    Article  CAS  Google Scholar 

  17. Galliano S, Bella F, Bonomo M, Viscardi G, Gerbaldi C, Boschloo G, Barolo C (2020) Hydrogel electrolytes based on xanthan gum: a green route towards stable dye-sensitized solar cells. Nano mater 10(8):1585. https://doi.org/10.3390/nano10081585

    Article  CAS  Google Scholar 

  18. Benaadad M, Gul B, Khan MS, Nafidi A (2023) Exploring the electronic, optical, and thermometric properties of novel AlCuX2 (X= S, Se, Te) semiconductors: a first-principles study. J Mater Sci 58:1–18. https://doi.org/10.1007/s10853-023-08506-3

    Article  CAS  Google Scholar 

  19. Benaadad M, Nafidi A, Melkoud S, Khan MS, Soubane D (2021) First-principles investigations of structural, optoelectronic, and thermoelectric properties of Cu-based chalcogenides compounds. J Mater Sci 56(28):15882–15897. https://doi.org/10.1007/s10853-021-06325-y

    Article  CAS  Google Scholar 

  20. Mohamed AS, Ahmad H (2024) Insight into the electronic, optical, thermodynamic, and thermoelectric properties of novel chalcogenides: an ab initio study. Int J Quant Chem 124(1):e27309. https://doi.org/10.1002/qua.27309

    Article  CAS  Google Scholar 

  21. Benaadad M, Nafidi A, Melkoud S, Mahraj I, Salmi M (2022) Investigation of structural, optoelectronic, and thermoelectric properties of GaCuX2 (X= S, Se, and Te) chalcopyrites semiconductors using the accurate mBJ approach. Phys B Condens Matter 642:414118. https://doi.org/10.1016/j.physb.2022.414118

    Article  CAS  Google Scholar 

  22. Wei J, Yang L, Ma Z, Song P, Zhang M, Ma J, Wang X (2020) Review of current high-ZT thermoelectric materials. J Mater Sci 55:12642–12704. https://doi.org/10.1007/s10853-020-04949-0

    Article  CAS  Google Scholar 

  23. Ahmed Simon AA, Badamchi B, Subbaraman H, Sakaguchi Y, Mitkova M (2020) Phase change in Ge–Se chalcogenide glasses and its implications on optical temperature-sensing devices. J Mater Sci Mater Electron 31:11211–11226. https://doi.org/10.1007/s10854-020-03669-0

    Article  CAS  Google Scholar 

  24. Zhang XL, Liu LF, Liu WM (2013) Quantum anomalous Hall effect and tunable topological states in 3d transition metals doped silicene. Sci Rep 3:1–7. https://doi.org/10.1038/srep02908

    Article  Google Scholar 

  25. Ji AN-C, Xie XC, Liu WM (2007) Quantum magnetic dynamics of polarized light in arrays of microcavities. Phys Rev Lett 99:1–4. https://doi.org/10.1103/PhysRevLett.99.183602

    Article  CAS  Google Scholar 

  26. Jiang ZF, Lie RD, Liu WM (2005) Semiclassical time evolution of the holes from Luttinger Hamiltonian. Phys Rev B 72:1–4. https://doi.org/10.1103/PhysRevB.72.045201

    Article  CAS  Google Scholar 

  27. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev A 140(4A):1–6. https://doi.org/10.1103/PhysRev.140.A1133

    Article  Google Scholar 

  28. Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MI, Refson K, Payne MC (2005) First principles methods using CASTEP. Z Kristallogr Cryst Mater Z Krist-Cryst Mater 220(5–6):567–570. https://doi.org/10.1524/zkri.220.5.567.65075

    Article  CAS  Google Scholar 

  29. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  PubMed  Google Scholar 

  30. Jochen H, Gustavo E, Ernzerhof M (2003) Hybrid functionals based on a screened Coulomb potential. J Chem Phys 118(18):8207–8215. https://doi.org/10.1063/1.1564060

    Article  CAS  Google Scholar 

  31. Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B 43(3):1–14. https://doi.org/10.1103/PhysRevB.43.1993

    Article  Google Scholar 

  32. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13(12):5188–5192. https://doi.org/10.1103/PhysRevB.13.5188

    Article  Google Scholar 

  33. Fischer TH, Almlof J (1992) General methods for geometry and wave function optimization. J Phys Chem 96(24):9768–9774. https://doi.org/10.1021/j100203a036

    Article  CAS  Google Scholar 

  34. Wallace D (2005) An introduction to Hellmann-Feynman theory. Electronic theses and dissertations. 413. https://stars.library.ucf.edu/etd/413

  35. Perdew JP, Ernzerhof M, Burke K (1996) Rationale for mixing exact exchange with density functional approximations. J Chem Phys 105(22):9982–9985. https://doi.org/10.1063/1.472933

    Article  CAS  Google Scholar 

  36. Deak P, Aradi B, Frauenheim T, Janzén E, Gali A (2010) Accurate defect levels obtained from the HSE06 range-separated hybrid functional. Phy Rev B 81(15):1–4. https://doi.org/10.1103/PhysRevB.81.153203

    Article  CAS  Google Scholar 

  37. Kronig RDL (1926) On the theory of dispersion of X-rays. JOSA 12(6):547–557. https://doi.org/10.1364/JOSA.12.000547

    Article  CAS  Google Scholar 

  38. Mainprice D (1997) Modeling the anisotropic seismic properties of partially molten rocks found at mid-ocean ridges. Tectonophysics 279(1–4):161–179. https://doi.org/10.1016/S0040-1951(97)00122-4

    Article  Google Scholar 

  39. Hadi MA, Roknuzzaman M, Chroneos A, Naqib SH, Islam AKMA, Vovk RV, Ostrikov K (2017) Elastic and thermodynamic properties of new (Zr3− xTix) AlC2 MAX-phase solid solutions. Comput Mater Sci 137:318–326. https://doi.org/10.1016/j.commatsci.2017.06.007

    Article  CAS  Google Scholar 

  40. Gardiner SJ (1995) Harmonic approximation, vol 221. Cambridge University Press. https://doi.org/10.1515/9783110818574.

  41. Gonze X, Lee C (1997) Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys Rev B 55(16):10355–10368. https://doi.org/10.1103/PhysRevB.55.10355

    Article  CAS  Google Scholar 

  42. Kim J, Wang C, Hughbanks T (1999) Synthesis and structures of new layered ternary manganese tellurides: AMnTe2 (A= K, Rb, Cs), Na3Mn4Te6, and NaMn1.56Te2. Inorg Chem 38(2):235–42. https://doi.org/10.1021/ic980805w

    Article  CAS  Google Scholar 

  43. Orisakwe EN, Sharma V, Lowther JE (2012) Elastic moduli of advanced orthorhombic binary and ternary metal (V, Ta, Nb) nitrides with the U2S3structure. Phys Stat Sol 249:1020. https://doi.org/10.1002/pssb.201147333

    Article  CAS  Google Scholar 

  44. Suleiman MSH, Joubert DP (2015) Phys Status Solid B 252:2858. https://doi.org/10.1007/s10825-023-02110-z

  45. Helaimia T, Benmakhlouf A, Bouchenafa M, Messahli I, Maabed S, Khamloul F, Bouhemadou A (2022) A comprehensive study of the structural, elastic, electronic, and optical properties of the tetragonal sodium chalcogenides NaAlX2 (X= O, S, Se, Te). Philoso Mag 102(1):69–94. https://doi.org/10.1080/14786435.2021.1980834

    Article  CAS  Google Scholar 

  46. Jaffe JE, Zunger A (1984) Theory of the band-gap anomaly in ABC2 chalcopyrite semiconductors. Phys Rev B 29(4):1882. https://doi.org/10.1103/PhysRevB.29.1882

    Article  CAS  Google Scholar 

  47. Sahu BR (1997) Electronic structure and bonding of ultralight LiMg. Mater Sci Eng B 49(1):74–78. https://doi.org/10.1016/S0921-5107(97)00068-8

    Article  Google Scholar 

  48. Mushtaq M, Muhammad A, Ali A, Sattar MA, Muhammad S (2020) First-principles search for half-metallic ferromagnetism in CsCrZ2 (Z = O, S, Se, Te) Heusler alloys. J Mol Graph Model 98(1–20):107620. https://doi.org/10.1016/j.jmgm.2020.107620

    Article  CAS  PubMed  Google Scholar 

  49. Mahmood Q, Rouf SA, Algrafy E, Murtaza G, Ramay SM, Mahmood A (2020) First principle analysis of electronic, optical and thermoelectric characteristics of XBiO3 (X = Al, Ga, In) perovskites. Opto-Electron Rev 28:8–14. https://doi.org/10.24425/opelre.2020.132497

    Article  Google Scholar 

  50. Khalil RMA, Hussain MI, Saeed N, Rana AM, Hussain F (2021) The prediction of structural, electronic, optical and vibrational behavior of ThS2 for nuclear fuel applications: a DFT study. Opt Quant Electron 53:1–15. https://doi.org/10.1007/s11082-020-02698-7

    Article  CAS  Google Scholar 

  51. Samat MH, Ali AMM, Taib MFM, Hassan OH, Yahya MZA (2016) Hubbard U calculations on optical properties of 3d transition metal oxide TiO2. Results Phys 6:891–896. https://doi.org/10.1016/j.rinp.2016.11.006

    Article  Google Scholar 

  52. Reshak AH, Khan W (2014) The density functional theory of electronic structure, electronic charge density, linear and no linear optical properties of alpha-LiAlTe2. J Alloys Comp 592:92–99. https://doi.org/10.1016/j.jallcom.2013.12.251

    Article  CAS  Google Scholar 

  53. Bouhemadou A, Haddadi K, Bin-Omran S, Khenata R, Al-Douri Y, Maabed S (2015) Structural, elastic, electronic and optical properties of the quaternary nitridogallate LiCaGaN2: first-principles study. Mater Sci Semicond Process 40:64–76. https://doi.org/10.1016/j.mssp.2015.06.021

    Article  CAS  Google Scholar 

  54. Belgoumri G, Bentabet A, Khenata R, Bouhadda Y, Benmakhlouf A, Rai DP, Bounab S (2018) Insight into the structural, electronic and elastic properties of AInQ2 (A: K, Rb and Q: S, Se, Te) layered structures from first-principles calculations. Chin J Phys 56(3):1074–1088. https://doi.org/10.1016/j.cjph.2018.04.009

    Article  CAS  Google Scholar 

  55. Morrison AQ, Case ED, Ren F, Baumann AJ, Kleinow DC (2012) Elastic modulus, biaxial fracture strength, electrical and thermal transport properties of thermally fatigued hot pressed LAST and LASTT thermoelectric materials. Mater Chem Phys 134(2–3):973–987. https://doi.org/10.1016/j.matchemphys.2012.03.100

    Article  CAS  Google Scholar 

  56. Bannikov VV, Shein IR, Ivanovskii AL (2011) Elastic and electronic properties of hexagonal rhenium sub-nitrides Re3N and Re2N in comparison with hcp-Re and wurtzite-like rhenium mononitride ReN. Physica Status Solidi B 248(6):1369–1374. https://doi.org/10.1002/pssb.201046564

    Article  CAS  Google Scholar 

  57. Khalil RMA, Hussain F, Rana AM, Imran M, Murtaza G (2019) Comparative study of polytype 2H-MoS2 and 3R-MoS2 systems by employing DFT. Physica E: Low-Dimens Syst Nanostruct 106:338–345. https://doi.org/10.1016/j.physe.2018.07.003

    Article  CAS  Google Scholar 

  58. Colmenero F, Fernandez AM, Cobos J, Timon V (2018) Thermodynamic properties of uranyl-containing materials based on density functional theory. J Phys Chem C 122(10):5254–5267. https://doi.org/10.1021/acs.jpcc.7b12341

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Researchers Supporting Project Number (RSPD2024R551) King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and supervision were contributed by RMAK; Methodology, resources, and visualization were described by RMAK and MIH; Software and validation were involved by RF and MIH; Formal Analysis was attributed by MIH and SZ; Investigation was done by SZ and AA; Data Curation was analyzed by RF and SZ; Writing-Original Draft and Preparation did by MIH, RF and SZ; Writing-Review and Editing was responsible by FH, MIH, NHA, and SM; Funding Acquisition was performed by NHA and SM.

Corresponding author

Correspondence to Muhammad Iqbal Hussain.

Ethics declarations

Conflict of interest

There is no conflict of interest for all authors to publish this manuscript.

Ethical approval

This declaration is “not applicable”.

Additional information

Handling Editor: Peiyao Zhao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalil, R.M.A., Hussain, M.I., Zafar, S. et al. Comprehensive analysis of the phase stability, optoelectronic, mechanical, thermodynamic, and vibrational properties for prospective optoelectronic applications of novel combinations of chalcogenides XScTe2 (X = Li, Rb) by employing density functional theory. J Mater Sci 59, 8374–8391 (2024). https://doi.org/10.1007/s10853-024-09677-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09677-3

Navigation