Skip to main content
Log in

The Boron conundrum: the case of cationic clusters B + n with n = 2–20

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We investigate the molecular and electronic structure and thermochemical properties of the cationic boron clusters B + n with n = 2–20, using both MO and DFT methods. Several functionals are used along with the MP2, G3, G3B3, G4, and CCSD(T)/CBS methods. The latter is the high accuracy reference. While the TPSS, TPSSh, PW91, PB86, and PBE functionals show results comparable to high-accuracy MO methods, both BLYP and B3LYP functionals are not accurate enough for three-dimensional (3D) structures. A negligible difference is observed between the B3LYP, MP2, and CCSD(T) geometries. A transition between 2D and 3D structures occurs for this series at the B16 +–B19 + sizes. While smaller clusters B + n with n ≤ 15 are planar or quasi-planar, a structural competition takes place in the intermediate sizes of B +16–19 . The B20 + cation has a 3D tubular shape. The standard heats of formation are determined and used to evaluate the cluster stability. The average binding energy tends to increase with increasing size toward a limit. All closed-shell species B + n has an aromatic character, but an enhanced stability is found for B5 + and B13 + whose aromaticity and electron delocalization are analyzed using the LOL technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hanley L, Anderson SL (1987) J Phys Chem 91:5161

    Article  CAS  Google Scholar 

  2. Hanley L, Whitten JL, Anderson SL (1988) J Phys Chem 92:5803

    Article  CAS  Google Scholar 

  3. Zhai HJ, Wang LS, Alexandrova AN, Boldyrev AI (2002) J Chem Phys 117:7917

    Article  CAS  Google Scholar 

  4. Zhai HJ, Kiran B, Li J, Wang LS (2003) Nat Mat 2:827

    Article  CAS  Google Scholar 

  5. Zhai HJ, Alexandrova AN, Birch KA, Boldyrev AI, Wang LS (2003) Angew Chem Int Ed 42:6004

    Article  CAS  Google Scholar 

  6. Sergeeva AP, Zubarev DY, Zhai HJ, Boldyrev AI, Wang LS (2008) J Am Chem Soc 130:7244

    Article  CAS  Google Scholar 

  7. Sergeeva AP, Averkiev BB, Zhai HJ, Boldyrev AI, Wang LS (2011) J Chem Phys 134:224304

    Article  Google Scholar 

  8. Huang W, Sergeeva AP, Zhai HJ, Averkiev BB, Wang LS, Boldyrev AI (2010) Nat Chem 2:202

    Article  Google Scholar 

  9. Alexandrova AN, Boldyrev AI (2004) J Phys Chem A 108:3509

    Article  CAS  Google Scholar 

  10. Zubarev DY, Boldyrev AI (2006) J Comput Chem 28:251

    Article  Google Scholar 

  11. Kiran B, Bulusu S, Zhai HJ, Yoo S, Cheng XC, Wang LS (2005) Proc Natl Acad Sci USA 102:961

    Article  CAS  Google Scholar 

  12. Gopakumar G, Nguyen MT, Ceulemans A (2008) Chem Phys Lett 450:175

    Article  CAS  Google Scholar 

  13. Ceulemans A, Muya JT, Gopakumar G, Nguyen MT (2008) Chem Phys Lett 461:226

    Article  CAS  Google Scholar 

  14. Muya JT, Nguyen MT, Ceulemans A (2009) Chem Phys Lett 483:10

    Article  Google Scholar 

  15. Muya JT, Gopakumar G, Nguyen MT, Ceulemans A (2011) Chem Phys Phys Chem 13:7524

    CAS  Google Scholar 

  16. Bean DE, Muya JT, Flower PW, Nguyen MT, Ceulemans A (2011) Chem Phys Phys Chem 13:20855

    CAS  Google Scholar 

  17. Nguyen MT, Matus MH, Ngan VT, Grant DJ, Dixon DA (2009) J Phys Chem A 113:4895

    Article  CAS  Google Scholar 

  18. Kiran B, Gopakumar G, Nguyen MT, Kandalam AK, Jena P (2009) Inorg Chem 48:9965

    Article  CAS  Google Scholar 

  19. Tai TB, Ceulemans A, Nguyen MT (2012) Chem Eur J 18:4510

    Article  CAS  Google Scholar 

  20. Tai TB, Tam NM, Nguyen MT (2012) Chem Phys Lett 530:71

    Article  CAS  Google Scholar 

  21. Akman N, Tas M, Ozdogan C, Boustani I (2011) Phys Rev B 84:075463

    Article  Google Scholar 

  22. Boustani I (1997) Phys. Rev. B 55:16426

    Article  CAS  Google Scholar 

  23. Grimes RN (2004) J Chem Edu 81:657 and references therein

  24. Bean DE, Fowler PW (2009) J Phys Chem C 113:15569

    Article  CAS  Google Scholar 

  25. Chacko S, Kanhere DG (2003) Phys Rev B 68:035414

    Article  Google Scholar 

  26. Tai TB, Grant DJ, Nguyen MT, Dixon DA (2010) J Phys Chem A 114:994

    Article  CAS  Google Scholar 

  27. Alexandrova AN, Boldyrev AI, Zhai HJ, Wang LS (2006) Coord Chem Rev 250:2811 and references therein

    Google Scholar 

  28. Oger E, Crawford NRM, Kelting R, Weis P, Kappes MM, Ahlrichs R (2007) Angew Chem Int Ed 46:8503

    Article  CAS  Google Scholar 

  29. Boustani IB, Zhu Z, Tomanek D (2011) Phys Rev B 83:193405

    Article  Google Scholar 

  30. An W, Bulusu S, Gao Y, Zeng XC (2006) J Chem Phys 124:154310

    Article  Google Scholar 

  31. Pan L, Li J, Wang LS (2008) J Chem Phys 129:024302

    Article  Google Scholar 

  32. Li F, Jin P, Jiang D, Wang L, Zhang SB, Zhao J, Chen Z (2012) J Chem Phys 136:074302

    Article  Google Scholar 

  33. Ray AK, Howard IA, Kanal KM (1992) Phys Rev B 45:14247

    Article  CAS  Google Scholar 

  34. Kato H, Yamashita K, Morokuma K (1992) Chem Phys Lett 190:361

    Article  CAS  Google Scholar 

  35. Niu J, Rao BK, Jena P (1997) J Chem Phys 107:132

    Article  CAS  Google Scholar 

  36. Bonacic-Koutecky V, Fantucci P, Koutecky J (1991) Chem Rev 91:1035

    Article  CAS  Google Scholar 

  37. Garcia-Molina R, Heredia-Avalos S, Abril I (2000) J Phys Condens Matter 12:5519

    Article  CAS  Google Scholar 

  38. Boustani I (1994) Int J Quant Chem 52:1081

    Article  CAS  Google Scholar 

  39. Ricca A, Bauschlicher CW Jr (1997) J Chem Phys 106:2317

    Article  CAS  Google Scholar 

  40. Ricca A, Bauschlicher CW Jr (1996) Chem Phys 208:233

    Article  CAS  Google Scholar 

  41. Gillery C, Linguerri R, Rosmus P, Maier JP (2005) J Phys Chem 219:467

    CAS  Google Scholar 

  42. Li QS, Jin HW (2002) J Phys Chem A 106:7042

    Article  CAS  Google Scholar 

  43. Li QS, Jin Q, Luo Q, Tang AC, Yu JK, Zhang HX (2003) Int J Quant Chem 94:269

    Article  CAS  Google Scholar 

  44. Ma J, Li Z, Fan K, Zhou M (2003) Chem Phys Lett 372:708

    Article  CAS  Google Scholar 

  45. Kawai R, Weare JH (1992) Chem Phys Lett 191:311

    Article  CAS  Google Scholar 

  46. Gu FL, Yang X, Tang AC, Jiao HJ, Schleyer PVR (1998) J Comput Chem 19:203

    Article  CAS  Google Scholar 

  47. Fowler JE, Ugalde JM (2000) J Phys Chem A 104:397

    Article  CAS  Google Scholar 

  48. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision C.02, Gaussian Inc., Wallingford

  49. Werner H-J, Knowles PJ, Lindh R, Manby FR, Schütz M, Celani P, Korona T, Rauhut G, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Hampel C, Hetzer G, Lloyd AW, McNicholas SJ, Meyer W, Mura ME, Nicklass A, Palmieri A, Pitzer R, Schumann U, Stoll H, Stone A J, Tarroni R, Thorsteinsson T (2006) MOLPRO, version 2006.1, a package of ab initio programs

  50. Tai TB, Nguyen MT (2011) J Chem Theory Comput 7:1119

    Article  CAS  Google Scholar 

  51. Stevens WJ, Krauss M, Basch H, Jasien PR (1992) Can J Chem 70:612

    Article  CAS  Google Scholar 

  52. Baboul AG, Curtiss LA, Redfern PC (1999) J Chem Phys 110:7650

    Article  CAS  Google Scholar 

  53. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  54. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  55. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623

    Article  CAS  Google Scholar 

  56. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  57. Pople JA (1980) J. Chem. Phys 72:650

    Article  Google Scholar 

  58. Bartlett RJ, Musial M (2007) Rev Mod Phys 79:291 and references therein

  59. Tai TB, Kadlubanski P, Roszak S, Majumdar D, Leszkzynski J, Nguyen MT (2011) Chem Phys Chem 12:2948

    Article  CAS  Google Scholar 

  60. Tai TB, Nguyen MT (2012) J Comput Chem 33:800

    Article  CAS  Google Scholar 

  61. Tai TB, Nhat PV, Nguyen MT, Li S, Dixon DA (2011) J Phys Chem A 115:7673

    Article  CAS  Google Scholar 

  62. Rittby M, Bartlett RJ (1988) J Phys Chem 92:3033

    Article  CAS  Google Scholar 

  63. Knowles PJ, Hampel C, Werner H-J (1994) J Chem Phys 99:5219

    Article  Google Scholar 

  64. Deegan MJO, Knowles PJ (1994) Chem Phys Lett 227:321

    Article  CAS  Google Scholar 

  65. Dunning TH (1989) J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  66. Kendell RA, Dunning TH, Harrison RJ (1992) J Chem Phys 96:6796

    Article  Google Scholar 

  67. Peterson KA, Woon DE, Dunning TH (1994) J Chem Phys 100:7410

    Article  CAS  Google Scholar 

  68. Helgaker T, Klopper W, Koch H, Nagel J (1997) J Chem Phys 106:9639

    Article  CAS  Google Scholar 

  69. Halkier A, Helgaker T, Jørgensen P, Klopper W, Koch H, Olsen J, Wilson AK (1998) Chem Phys Lett 286:243

    Article  CAS  Google Scholar 

  70. Douglas M, Kroll NM (1974) Ann Phys 82:89

    Article  CAS  Google Scholar 

  71. Hess BA (1985) Phys Rev A 32:756

    Article  CAS  Google Scholar 

  72. Hess BA (1986) Phys Rev A 33:3742

    Article  CAS  Google Scholar 

  73. De Jong WA, Harrison RJ, Dixon DA (2001) J Chem Phys 114:48

    Article  Google Scholar 

  74. Moore CE (1949) Atomic energy levels as derived from the analysis of optical spectra, Volume 1, H to V; U.S. National Bureau of Standards Circular 467, U.S. Department of Commerce, National Technical Information Service, COM-72-50282: Washington, DC

  75. Karton A, Martin JML (2007) J Phys Chem A 111:5936

    Article  CAS  Google Scholar 

  76. Tai TB, Nguyen MT (2009) Chem Phys Lett 483:35

    Article  CAS  Google Scholar 

  77. Tai TB, Nguyen MT (2010) Chem Phys 475:35

    Article  Google Scholar 

  78. Tai TB, Nguyen MT, Dixon DA (2010) J Phys Chem 114:2893

    CAS  Google Scholar 

  79. Curtiss LA, Raghavachari K, Redfern PC, Pople JA (1997) J Chem Phys 106:1063

    Article  CAS  Google Scholar 

  80. Curtiss LA, Raghavachari K, Redfern PC, Rassolov V, Pople JA (1998) J Chem Phys 109:7764

    Article  CAS  Google Scholar 

  81. Curtiss LA, Redfern PC, Raghavachari K (2007) J Chem Phys 126:084108

    Article  Google Scholar 

  82. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  83. Tao J, Perdew JP, Staroverov VN, Scuseria GE (2003) Phys Rev Lett 91:146401

    Article  Google Scholar 

  84. Perdew JP, Kurth S, Zupan A, Blaha P (1999) Phys Rev Lett 82:2544

    Article  CAS  Google Scholar 

  85. Perdew JP, Tao J, Staroverov VN, Scuseria GE (2004) J Chem Phys 120:6898

    Article  CAS  Google Scholar 

  86. Perdew JP (1986) Phys Rev B 33:8822

    Article  Google Scholar 

  87. Perdew JP, Burk K, Wang Y (1996) Phys Rev B 54:16533

    Article  CAS  Google Scholar 

  88. Bruna PJ, Wright JS (1990) J Mol Struct Theochem 210:243

    Article  Google Scholar 

  89. PvR Schleyer, Maerker C, Dransfeld A, Jiao H, Hommes NJRE (1996) J Am Chem Soc 118:6317

    Article  Google Scholar 

  90. Johansson MP (2009) J Phys Chem C 113:524

    Article  CAS  Google Scholar 

  91. Schmider HL, Becke AD (2000) Theochem 527:51

    Article  CAS  Google Scholar 

  92. Jacobsen HJ (2009) J Comput Chem 30:1093

    Article  CAS  Google Scholar 

  93. Steinmann SN, Mo Y, Corminboeuf C (2011) Phys Chem Chem Phys 13:20584

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are indebted to the KULeuven Research Council for continuing support (GOA, IUAP, and IDO programs). TBT thanks the Arenberg Doctoral School of the KULeuven for a scholarship. We thank professor Arnout Ceulemans for illuminating discussion on the boron conundrum.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minh Tho Nguyen.

Additional information

Published as part of the special collection of articles celebrating theoretical and computational chemistry in Belgium.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tai, T.B., Tam, N.M. & Nguyen, M.T. The Boron conundrum: the case of cationic clusters B + n with n = 2–20. Theor Chem Acc 131, 1241 (2012). https://doi.org/10.1007/s00214-012-1241-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-012-1241-8

Keywords

Navigation