Skip to main content
Log in

Effect of helical edge states on the tunneling conductance in ferromagnet/noncentrosymmetric superconductor junction

  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract.

Helical edge states exist in the mixed spin-singlet and spin-triplet phase of a noncentrosymmetric (NCS) superconductor [Y. Tanaka, T. Yokoyama, A.V. Balatsky, N. Nagaosa, Phys. Rev. B 79, 060505(R) (2009)]. In this article we have considered a planar ferromagnetic metal/NCS superconductor tunnel junction and have studied the effect of these helical edge states which manifests itself through the charge and spin tunneling conductance across the junction. We have shown the behavior of conductance for the entire range of variation of γ = Δ -/Δ + where Δ ± are the order parameters in the positive and negative helicity bands of the NCS superconductor. There exists a competition between the Rashba parameter α and the exchange energy E ex which is crucial for determining the variation of the conductance with the applied bias voltage across the junction. We have found a nonzero spin current across the junction which appears due to the exchange energy in the Ferromagnet and modulates with the bias voltage. It also changes its profile when the strength of the exchange energy is varied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.J.M. de Jong, C.W.J. Beenakker, Phys. Rev. Lett. 74, 1657 (1995)

    Article  ADS  Google Scholar 

  2. G. Sun, Z. Zheng, D.Y. Xing, J. Dong, Z.D. Wang, J. Phys.: Condens. Matter 13, 627 (2001)

    Article  ADS  Google Scholar 

  3. V.A. Vas`ko et al., Appl. Phys. Lett. 78, 1134 (1997)

    Article  Google Scholar 

  4. Jian-Xin Zhu, B. Friedman, C.S. Ting, Phys. Rev. B 59, 9558 (1999)

    Article  ADS  Google Scholar 

  5. V.A. Vas’ko, K.R. Nikolaev, V.A. Larkin, P.A. Kraus, Goldman, Appl. Phys. Lett. 73, 844 (1998)

    Article  ADS  Google Scholar 

  6. Z.W. Dong et al., Appl. Phys. Lett. 71, 1718 (1997)

    Article  ADS  Google Scholar 

  7. Z.Y. Chen, A. Biswas, I. Zutic, T. Wu, S.B. Ogale, R.L. Greene, T. Venkatesan, Phys. Rev. B 63, 212508 (2001)

    Article  ADS  Google Scholar 

  8. P.S. Luo, H. Wu, F.C. Zhang, C. Cai, X.Y. Qi, X.L. Dong, W. Liu, X.F. Duan, B. Xu, L.X. Cao, X.G. Qiu, B.R. Zhao, Phys. Rev. B 71, 094502 (2005)

    Article  ADS  Google Scholar 

  9. T. Yokoyama, Y. Tanaka, A.A. Golubov, Phys. Rev. B 75, 094514 (2007)

    Article  ADS  Google Scholar 

  10. P.M.R. Brydon, B. Kastening, D.K. Morr, D. Manske, Phys. Rev. B 77, 104504 (2008)

    Article  ADS  Google Scholar 

  11. P.M.R. Brydon, D. Manske, M. Sigrist, J. Phys. Soc. Jpn 77, 103714 (2008)

    Article  ADS  Google Scholar 

  12. P.M.R. Brydon, C. Iniotakis, D. Manske, New J. Phys. 11, 055055 (2009)

    Article  ADS  Google Scholar 

  13. P.M.R. Brydon, D. Manske, Phys. Rev. Lett. 103, 147001 (2009)

    Article  ADS  Google Scholar 

  14. K. Kuboki, H. Takahashi, Phys. Rev. B 70, 214524 (2004)

    Article  ADS  Google Scholar 

  15. M. Cuoco, A. Romano, C. Noce, P. Gentile, Phys. Rev. B 78, 054503 (2008)

    Article  ADS  Google Scholar 

  16. P.M.R. Brydon, Phys. Rev. B 80, 224520 (2009)

    Article  ADS  Google Scholar 

  17. S. Wu, K.V. Samokhin, Phys. Rev. B 80, 014516 (2009)

    Article  ADS  Google Scholar 

  18. M. Zareyan, H. Mohammadpour, A.G. Moghaddam, Phys. Rev. B 78, 193406 (2008)

    Article  ADS  Google Scholar 

  19. J. Linder, T. Yokoyama, D. Huertas-Hernando, A. Sudbo, Phys. Rev. Lett. 100, 187004 (2008)

    Article  ADS  Google Scholar 

  20. M. Sato, S. Fujimoto, Phys. Rev. B 79, 094504 (2009)

    Article  ADS  Google Scholar 

  21. Y. Tanaka, T. Yokoyama, A.V. Balatsky, N. Nagaosa, Phys. Rev. B 79, 060505(R) (2009)

    ADS  Google Scholar 

  22. S.P. Mukherjee, S.S. Mandal, J. Phys.: Condens. Matter 21, 375702 (2009)

    Article  MathSciNet  Google Scholar 

  23. A.B. Vorontsov, I. Vekhter, M. Eschrig, Phys. Rev. Lett. 101, 127003 (2008)

    Article  ADS  Google Scholar 

  24. C. Iniotakis, N. Hayashi, Y. Sawa, T. Yokoyama, U. May, Y. Tanaka, M. Sigrist, Phys. Rev. B 76, 012501 (2007)

    Article  ADS  Google Scholar 

  25. E.I. Rashba, Sov. Phys. Solid State 2, 1109 (1960)

    Google Scholar 

  26. S.S. Mandal, S.P. Mukherjee, J. Phys.: Condens. Matter 18, L593 (2006)

    Article  ADS  Google Scholar 

  27. P.A. Frigeri, D.F. Agterberg, A. Koga, M. Sigrist, Phys. Rev. Lett. 92, 097001 [Erratum 93, 099903(E) (2004)] (2004)

  28. G.E. Blonder, M. Tinkham, T.M. Klapwijk, Phys. Rev. B 25, 4515 (1982)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Mukherjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukherjee, S. Effect of helical edge states on the tunneling conductance in ferromagnet/noncentrosymmetric superconductor junction. Eur. Phys. J. B 80, 51–58 (2011). https://doi.org/10.1140/epjb/e2011-10957-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2011-10957-8

Keywords

Navigation