Skip to main content

Type I and Type II Superconductivity

  • Chapter
  • First Online:
Superconducting Materials

Abstract

Superconductors may be categorized into many classes based on their critical temperature, Tc, crystal structure, and the nature of their superconductivity. The magnetic fields and current densities must be kept below the critical values Bc, and Jc respectively to remain in a superconducting state. One of the classifications is based on how the superconducting materials behaved when exposed to weak, external magnetic fields Ba. According to the Meissner Effect, as weak magnetic fields are exposed to a superconducting material, no magnetic field will penetrate the material, Bin except for a small region surrounding it, Bout creating perfect diamagnetism. However, the superconductivity may break up when Ba increases which classify the materials into Type I and Type II superconductors. In Type I superconductors, there is only one critical magnetic field Bc which separates the superconducting and non-superconducting states of the materials. The BCS theory has successfully explained the superconductivity in low-temperature superconductors based on the formation of the electron Cooper pairs, enabling them to occupy the same ground energy level. In Type II superconductors, the formation of two critical magnetic fields, Bc1 and Bc2 creates the Vortex or Mixed State in the between. Below Bc1, the materials behaved as a superconductor and lost their superconductivity above Bc2. The differences between Type I and Type II superconductors may well be explained based on their changes between resistance and critical temperature, magnetization, and Ginzburg-Landau parameters, \(\kappa\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Van Delft, History and significance of the discovery of superconductivity by Kamerlingh Onnes in 1911. Phys. C Supercond. Appl. 479, 30–35 (2012)

    Article  ADS  Google Scholar 

  2. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Theory of superconductivity. Theory Supercond. 108(5), 1175–1204 (1957)

    MathSciNet  MATH  Google Scholar 

  3. J.G. Bednorz, M. Takashige, K.A. Müller, Possible High-Tc Superconductivity in the Ba-La-Cu-O system. Prop. Perovskites Other Oxide. 64, 189–193 (1986)

    Google Scholar 

  4. J.R. Gavaler, Superconductivity in NbGe films above 22 K. Appl. Phys. Lett. 23(8), 480–482 (1973)

    Article  ADS  Google Scholar 

  5. H.U. Habermeier, Science and technology of cuprate-based high temperature superconductor thin films, heterostructures and superlattices-the first 30 years. Low Temp. Phys. 42(10), 840–862 (2016)

    Article  ADS  Google Scholar 

  6. G.L. Zhao, Sharp electronic structure and anomalous isotope effect in Zr, Nb3Sn, and YBa2Cu3O7. Phys. Status Solid. Basic Res. 251(8), 1531–1538 (2014)

    Article  ADS  Google Scholar 

  7. B. Prabhakar, Mechanical properties of YBCO superconductor under high-pressure. Indian J. Sci. Technol. 13(22), 2264–2271 (2020)

    Article  Google Scholar 

  8. D. Koelle, R. Kleiner, F. Ludwig, E. Dantsker, J. Clarke, High-transition-temperature superconducting quantum interference devices. Rev. Mod. Phys. 71(3), 631–686 (1999)

    Article  ADS  Google Scholar 

  9. A.B. Karci, M. Tepe, H. Sozeri, Dependence of the structural, electrical and magnetic properties of the superconductive YBCO thin films on the deposition rate. J. Phys. Conf. Ser. 153, 0–8 (2009)

    Google Scholar 

  10. P. Bussmann-Holder, H. Büttner, The isotope effect in ferroelectric and superconducting oxides. Ferroelectrics 105(1), 21–26 (1990)

    Article  Google Scholar 

  11. J.E. Hirsch, F. Marsiglio, Meissner effect in nonstandard superconductors. Phys. C Supercond. Appl. 587, 1353896 (2021)

    Article  ADS  Google Scholar 

  12. J.Y. Oh et al., Strong correlation between flux pinning and epitaxial strain in the GdBa2Cu3O7-x/La0.7Sr0.3MnO3nanocrystalline heterostructure. RSC Adv. 10(64), 39102–39108 (2020)

    Article  ADS  Google Scholar 

  13. R.M. Scanlan, A.P. Malozemoff, D.C. Larbalestier, Superconducting materials for large scale applications. Proc. IEEE 92(10), 1639–1654 (2004)

    Article  Google Scholar 

  14. Y. Slimani, E. Hannachi, A. Ekicibil, M. A. Almessiere, F. Ben Azzouz, Investigation of the impact of nano-sized wires and particles TiO2 on Y-123 superconductor performance. J. Alloys Compd. 781, 664–673 (2019)

    Google Scholar 

  15. A.K. Jha, K. Matsumoto, Superconductive REBCO thin films and their nanocomposites: the role of rare-earth oxides in promoting sustainable energy. Front. Phys. 7, 1–21 (2019)

    Google Scholar 

  16. Y.S. Rammah, A.H. Salama, M. Elkhatib, Magnetic moment and its correlation with the critical temperature in YBCO. Int. Ceram. Rev. 68(5), 34–41 (2019)

    Article  Google Scholar 

  17. C. Egloff, A.K. Raychaudhuri, L. Rinderer, Penetration of a magnetic field into superconducting lead and lead-indium alloys. J. Low Temp. Phys. 52(1–2), 163–185 (1983)

    Article  ADS  Google Scholar 

  18. A.I. Gubin, K.S. Il’in, S.A. Vitusevich, M. Siegel, N. Klein, Dependence of magnetic penetration depth on the thickness of superconducting Nb thin films. Phys. Rev. B Condens. Matter Mater. Phys. 72 (6), 1–8 (2005)

    Google Scholar 

  19. T. Horide, F. Kametani, S. Yoshioka, T. Kitamura, K. Matsumoto, Structural evolution induced by interfacial lattice mismatch in self-organized YBa2Cu3O7-δ Nanocomposite Film. ACS Nano 11(2), 1780–1788 (2017)

    Article  Google Scholar 

  20. G. Deutscher, Coherence and single-particle excitations in the high-temperature superconductors. Nature 397(6718), 410–412 (1999)

    Article  ADS  Google Scholar 

  21. B. Lu, W.A. Van Wijngaarden, Bose-Einstein condensation in a QUIC trap. Can. J. Phys. 82(2), 81–102 (2004)

    Article  ADS  Google Scholar 

  22. C. Kittel, Introduction to Solid State Physics/Charles Kittel (1986), p. 646

    Google Scholar 

  23. R. Abd-Syukor, Introduction to Superconductivity: in Metals, Alloys and Cuprates (Universiti Pendidikan Sultan Idris, 2004)

    Google Scholar 

  24. Z. Chen, G. Geng, J. Fang, S. Dai, Design and characteristics analysis of a new high-temperature superconducting composite conductor. IEEE Trans. Appl. Supercond. 29(2), 1 (2019)

    Google Scholar 

  25. W. Meissner, R. Ochsenfeld, Ein neuer Effekt bei Eintritt der Supraleitfähigkeit. Naturwissenschaften 21(44), 787–788 (1933)

    Article  ADS  Google Scholar 

  26. F. London, H. London, the electromagnetic equations of the supraconductor. 85(1933) (1934)

    Google Scholar 

  27. K.H. Bennemann, J.B. Ketterson, History of superconductivity: conventional-, high-transition temperature and novel superconductors. Phys. Supercond. 1–21, May 2014 (2003)

    Google Scholar 

  28. L.P.G.O.R. Kov, Microscopic Derivation of Ginzburg-Landau Equations in th. J. Exptl. Theor. Phys. 36(6), 1364–1367 (1959)

    Google Scholar 

  29. A.A. Abrikosov, On the magnetic properties of superconductors of the second group. Sov. Phys. 5(6), 1174–1182 (1957)

    Google Scholar 

  30. Z. Li et al., Atomically thin superconductors. Small 17(9), 1–15 (2021)

    Google Scholar 

  31. B.D. Josephson, Possible new effects in superconductive tunneling. arXiv. 1(7), 251–253 (1962)

    Google Scholar 

  32. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Superconductivity at 39 K in magnesium diboride. Nature 410(6824), 63–64 (2001)

    Article  ADS  Google Scholar 

  33. M.K. Wu et al., Superconductivity at 93 K in a new mixed-phase Yb-Ba-Cu-O compound system at ambient pressure. Phys. Rev. Lett. 58(9), 908–910 (1987)

    Article  ADS  Google Scholar 

  34. A. Toshihisa, T. Yoshiaki, F. Masao, J. Kazunori, M. Junichi, M. Hiroshi, Preparation of highly oriented microstructure in the (Bi, Pb)2Sr2Ca2Cu3OxSintered oxide superconductors. Jpn. J. Appl. Phys. 29(4), L576–L579 (1990)

    Google Scholar 

  35. L.T.O. Nature, HgBa2Cu04+o. 362, 1990–1992 (1993)

    Google Scholar 

  36. A. Schilling, M. Cantoni, J.D. Guo, H.R. Ott, Superconductivity above 130 K in the Hg-Ba-Ca-Cu-O system. Nature 363(6424), 56–58 (1993)

    Article  ADS  Google Scholar 

  37. Y. Kamihara, T. Watanabe, M. Hirano, H. Hosono, Iron-based layered superconductor La[O1-xFx]FeAs (x= 0.05-0.12) with Tc = 26 K. J. Am. Chem. Soc. 130(11), 3296–3297 (2008)

    Article  Google Scholar 

  38. G. Zhou et al., Interface induced high temperature superconductivity in single unit-cell FeSe on SrTiO3(110). Appl. Phys. Lett. 108(20), 1–14 (2016)

    Google Scholar 

  39. E. Wigner, H.B. Huntington, On the possibility of a metallic modification of hydrogen. J. Chem. Phys. 3(12), 764–770 (1935)

    Article  ADS  Google Scholar 

  40. N.W. Ashcroft, Metallic hydrogen: a high-temperature superconductor? Phys. Rev. Lett. 21(26), 1748–1749 (1968)

    Article  ADS  Google Scholar 

  41. E. Snider et al., Room-temperature superconductivity in a carbonaceous sulfur hydride. Nature 586(7829), 373–377 (2020)

    Article  ADS  Google Scholar 

  42. R. Asokamani, March Towards Room Temperature Superconductivity, vol. 38, (2021), pp. 27–38

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siti Fatimah Saipuddin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saipuddin, S.F., Hashim, A., Suhaimi, N.E. (2022). Type I and Type II Superconductivity. In: Slimani, Y., Hannachi, E. (eds) Superconducting Materials. Springer, Singapore. https://doi.org/10.1007/978-981-19-1211-5_5

Download citation

Publish with us

Policies and ethics