Skip to main content
Log in

A model Hamiltonian for MgB \(\mathsf{_{2}}\) which takes into account its unusual phononic features

  • OriginalPaper
  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

Taking as a starting point the results of LDA calculations, which show that in \({\rm MgB_{2}}\) the phonons have a strong quartic anharmonicity and that the bond-stretching electron-phonon interaction (EPI) has both a linear and a large quadratic component, we propose a model Hamiltonian which successfully matches a number of experimental evidences. We relate the single critical temperature for both superconducting gaps to a phonon-induced inter-band coupling whose amplitude increases with temperature. We also obtain phonon frequencies and linewidths depending on the band filling, as well as band energies and hybridization amplitudes depending on the phonon number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I.I. Mazin, V.P. Antropov, Physica C 385, 49 (2003)

    Article  Google Scholar 

  2. F. Bouquet, R.A. Fisher, N.E. Phillips, D.G. Hinks, D.J. Jorgensen, Phys. Rev. Lett. 87, 047001 (2001)

    Article  Google Scholar 

  3. F. Giubileo, D. Roditchev, W. Sacks, R. Lamy, D.X. Thanh, J. Klein, S. Miraglia, D. Fruchart, J. Marcus, P. Monod, Phys. Rev. Lett. 87, 177008 (2001)

    Article  Google Scholar 

  4. H. Schmidt, J.F. Zasadzinski, K.E. Gray, D.G. Hinks, Phys. Rev. Lett. 88, 127002 (2002)

    Article  Google Scholar 

  5. M. Iavarone, G. Karapetrov, A.E. Koshelev, W.K. Kwok, G.W. Crabtree, D.G. Hinks, Phys. Rev. Lett. 89, 187002 (2002)

    Article  Google Scholar 

  6. S. Tsuda, T. Yokoya, Y. Takano, H. Kito, A. Matsushita, F. Yin, H. Harima, S. Shin, cond-mat/0303636 (2003)

  7. H.J. Choi, D. Roundy, H. Sun, M.L. Cohen, S.G. Louie, Nature, 418, 758 (2002)

  8. S.L. Bud’ko, G. Lapertot, C. Petrovic, C.E. Cunningham, N. Anderson, P.C. Canfield, Phys. Rev. Lett. 86, 1877 (2001)

    Article  Google Scholar 

  9. J. Kondo, Prog. Theor. Physics 29, 1 (1963)

    MATH  Google Scholar 

  10. H. Suhl, B.T. Matthias, L.R. Walker, Phys. Rev. Lett. 3, 552 (1959)

    Article  MATH  Google Scholar 

  11. I.I. Mazin, O.K. Andersen, O. Jepsen, O.V. Dolgov, J. Kortus, A.A. Golubov, A.B. Kuz’menko, D. van der Marel, Phys. Rev. Lett. 89, 107002 (2002)

    Article  Google Scholar 

  12. S. Jemima Balaselvi, A. Bharathi, V. Sankara Sastry, G.L.N. Reddy, Y. Hariharan, cond-mat/0303022 (2003)

  13. T. Dahm, N. Schopohl, Phys. Rev. Lett. 91, 017001 (2003)

    Article  Google Scholar 

  14. A.Y. Liu, I.I. Mazin, J. Kortus, Phys. Rev. Lett. 87, 087005 (2001)

    Article  Google Scholar 

  15. Y. Kong, O.V. Dolgov, O. Jepsen, O.K. Andersen, Phys. Rev. B 64, 020501(R) (2001)

    Article  Google Scholar 

  16. T. Yildirim, O. Gülseren, J.W. Lynn, C.M. Brown, T.J. Udovic, Q. Huang, N. Rogado, K.A. Regan, M.A. Hayward, J.S. Sluski, T. He, M.K. Haas, P. Khalifah, K. Inumaru, R.J. Cava, Phys. Rev. Lett. 87, 037001 (2001)

    Article  Google Scholar 

  17. K. Kunc, I. Loa, K. Syassen, R.K. Kremer, K. Ahn, J. Phys.: Condens. Matter 13, 9945 (2001)

    Article  Google Scholar 

  18. H.J. Choi, D. Roundy, H. Sun, M.L. Cohen, S.G. Louie, Phys. Rev. B 66, 020513(R) (2002)

    Article  Google Scholar 

  19. P. Postorino, A. Congeduti, P. Dore, A. Nucara, A. Bianconi, D. Di Castro, S. De Negri, A. Saccone, Phys. Rev. B 65, 020507 (2001)

    Article  Google Scholar 

  20. K.-P. Bohnen, R. Heid, B. Renker, Phys. Rev. Lett. 86, 5771 (2001)

    Article  Google Scholar 

  21. B. Renker, K.B. Bohnen, R. Heid, D. Ernst, H. Schlober, M. Koza, P. Adelmann, P. Schweiss, T. Wolf, Phys. Rev. Lett. 88, 067001 (2002)

    Article  Google Scholar 

  22. S. Barisic, J. Labbé, J. Friedel, Phys. Rev. Lett. 25, 919 (1970)

    Article  Google Scholar 

  23. L. Boeri, G.B. Bachelet, E. Cappelluti, L. Pietronero, Phys. Rev. B 65, 214501 (2002)

    Article  Google Scholar 

  24. see, for instance, Ch.3 in: W. Jones, N.H. March, Theoretical Solid State Physics (Dover Publications, Inc., New York 1973)

  25. Wei-Min Zhang, Da Hsuan Feng, R. Gilmore, Rev. Mod. Phys. 62, 867 (1990)

    Article  MathSciNet  Google Scholar 

  26. A.A. Golubov, J. Kortus, O.V. Dolgov, O. Jepsen, Y. Kong, O.K. Andersen, B.J. Gibson, K. Ahn, R.K. Kremer, J. Phys.: Condens. Matter 14, 1353 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Acquarone.

Additional information

Received: 12 May 2003, Published online: 22 September 2003

PACS:

74.20.-z Theories and models of superconducting state - 74.70.-b Superconducting materials

Rights and permissions

Reprints and permissions

About this article

Cite this article

Acquarone, M., Romanó, L. A model Hamiltonian for MgB \(\mathsf{_{2}}\) which takes into account its unusual phononic features. Eur. Phys. J. B 35, 13–20 (2003). https://doi.org/10.1140/epjb/e2003-00251-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2003-00251-y

Keywords

Navigation