Skip to main content
Log in

Deep quantum circuit simulations of low-energy nuclear states

  • Regular Article
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Numerical simulation is an important method for verifying the quantum circuits used to simulate low-energy nuclear states. However, real-world applications of quantum computing for nuclear theory often generate deep quantum circuits that place demanding memory and processing requirements on conventional simulation methods. Here, we present advances in high-performance numerical simulations of deep quantum circuits to efficiently verify the accuracy of low-energy nuclear physics applications. Our approach employs novel methods for accelerating the numerical simulation including management of simulated mid-circuit measurements to verify projection based state preparation circuits. We test these methods across a variety of high-performance computing systems and our results show that circuits up to 21 qubits and more than 115,000,000 gates can be efficiently simulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

This manuscript has no associated data. [Authors’ comment: The simulation software is available under NWQSim repository at: https://github.com/pnnl/NWQ-Sim/tree/mid-measure. Another code necessary topostprocess the simulations will be made available on GitHub as well, after a required release process.]

References

  1. I.C. Cloët, M.R. Dietrich, J. Arrington, A. Bazavov, M. Bishof, A. Freese, A.V. Gorshkov, A. Grassellino, K. Hafidi, Z. Jacob et al., Opportunities for nuclear physics & quantum information science. arXiv:1903.05453 (2019)

  2. D. Beck, J. Carlson, Z. Davoudi, J. Formaggio, S. Quaglioni, M. Savage, J. Barata, T. Bhattacharya, M. Bishof, I. Cloet et al., Quantum information science and technology for nuclear physics. input into us long-range planning arXiv:2303.00113 2023 (2023)

  3. D.-B. Zhang, H. Xing, H. Yan, E. Wang, S.-L. Zhu, Selected topics of quantum computing for nuclear physics. Chin. Phys. B 30(2), 020306 (2021). https://doi.org/10.1088/1674-1056/abd761

    Article  ADS  Google Scholar 

  4. M.J. Cervia, A.B. Balantekin, S.N. Coppersmith, C.W. Johnson, P.J. Love, C. Poole, K. Robbins, M. Saffman, Lipkin model on a quantum computer. Phys. Rev. C 104, 024305 (2021). https://doi.org/10.1103/PhysRevC.104.024305

    Article  ADS  Google Scholar 

  5. W. Qian, R. Basili, S. Pal, G. Luecke, J.P. Vary, Solving hadron structures using the basis light-front quantization approach on quantum computers. Phys. Rev. Res. 4, 043193 (2022). https://doi.org/10.1103/PhysRevResearch.4.043193

    Article  Google Scholar 

  6. I. Stetcu, A. Baroni, J. Carlson, Variational approaches to constructing the many-body nuclear ground state for quantum computing. Phys. Rev. C 105, 064308 (2022). https://doi.org/10.1103/PhysRevC.105.064308

    Article  ADS  Google Scholar 

  7. A.M. Romero, J. Engel, H.L. Tang, S.E. Economou, Solving nuclear structure problems with the adaptive variational quantum algorithm. Phys. Rev. C 105, 064317 (2022). https://doi.org/10.1103/PhysRevC.105.064317

    Article  ADS  Google Scholar 

  8. E.F. Dumitrescu, A.J. McCaskey, G. Hagen, G.R. Jansen, T.D. Morris, T. Papenbrock, R.C. Pooser, D.J. Dean, P. Lougovski, Cloud quantum computing of an atomic nucleus. Phys. Rev. Lett. 120, 210501 (2018). https://doi.org/10.1103/PhysRevLett.120.210501

    Article  ADS  Google Scholar 

  9. P. Siwach, P. Arumugam, Quantum computation of nuclear observables involving linear combinations of unitary operators. Phys. Rev. C 105, 064318 (2022). https://doi.org/10.1103/PhysRevC.105.064318

    Article  ADS  Google Scholar 

  10. W.A. de Jong, K. Lee, J. Mulligan, M. Płoskoń, F. Ringer, X. Yao, Quantum simulation of nonequilibrium dynamics and thermalization in the Schwinger model. Phys. Rev. D 106, 054508 (2022). https://doi.org/10.1103/PhysRevD.106.054508

    Article  ADS  MathSciNet  Google Scholar 

  11. O. Kiss, M. Grossi, P. Lougovski, F. Sanchez, S. Vallecorsa, T. Papenbrock, Quantum computing of the \({}^6\)Li nucleus via ordered unitary coupled clusters. Phys. Rev. C (2022). https://doi.org/10.1103/PhysRevC.106.034325

    Article  Google Scholar 

  12. F. Tacchino, A. Chiesa, S. Carretta, D. Gerace, Quantum computers as universal quantum simulators: state-of-the-art and perspectives. Adv. Quantum Technol. 3(3), 1900052 (2020). https://doi.org/10.1002/qute.201900052

    Article  Google Scholar 

  13. M. Cerezo, A. Arrasmith, R. Babbush, S.C. Benjamin, S. Endo, K. Fujii, J.R. McClean, K. Mitarai, X. Yuan, L. Cincio et al., Variational quantum algorithms. Nat. Rev. Phys. 3(9), 625–644 (2021)

    Article  Google Scholar 

  14. S. Raeisi, N. Wiebe, B.C. Sanders, Quantum-circuit design for efficient simulations of many-body quantum dynamics. N. J. Phys. 14(10), 103017 (2012). https://doi.org/10.1088/1367-2630/14/10/103017

    Article  Google Scholar 

  15. A. Pérez-Obiol, A.M. Romero, J. Menéndez, A. Rios, A. García-Sáez, B. Juliá-Díaz, Nuclear shell-model simulation in digital quantum computers. Sci. Rep. 13, 12291 (2023). https://doi.org/10.1038/s41598-023-39263-7

    Article  ADS  Google Scholar 

  16. I. Stetcu, A. Baroni, J. Carlson, Projection algorithm for state preparation on quantum computers. Phys. Rev. C 108, 031306 (2023). https://doi.org/10.1103/PhysRevC.108.L031306

    Article  ADS  Google Scholar 

  17. O. Kiss, M. Grossi, A. Roggero, Importance sampling for stochastic quantum simulations. Quantum 7, 977 (2023). https://doi.org/10.22331/q-2023-04-13-977

    Article  Google Scholar 

  18. J. Wright, M. Gowrishankar, D. Claudino, P.C. Lotshaw, T. Nguyen, A.J. McCaskey, T.S. Humble, Numerical simulations of noisy quantum circuits for computational chemistry. Mater. Theory 6(1), 18 (2022)

    Article  ADS  Google Scholar 

  19. S. Weinberg, Nuclear forces from chiral Lagrangians. Phys. Lett. B 251(2), 288–292 (1990). https://doi.org/10.1016/0370-2693(90)90938-3

    Article  ADS  Google Scholar 

  20. M. Piarulli, A. Baroni, L. Girlanda, A. Kievsky, A. Lovato, E. Lusk, L.E. Marcucci, S.C. Pieper, R. Schiavilla, M. Viviani, R.B. Wiringa, Light-nuclei spectra from chiral dynamics. Phys. Rev. Lett. 120, 052503 (2018). https://doi.org/10.1103/PhysRevLett.120.052503

    Article  ADS  Google Scholar 

  21. D. Lonardoni, J. Carlson, S. Gandolfi, J.E. Lynn, K.E. Schmidt, A. Schwenk, X.B. Wang, Properties of nuclei up to \(a=16\) using local chiral interactions. Phys. Rev. Lett. 120, 122502 (2018). https://doi.org/10.1103/PhysRevLett.120.122502

    Article  ADS  Google Scholar 

  22. P. Maris, R. Roth, E. Epelbaum, R.J. Furnstahl, J. Golak, K. Hebeler, T. Hüther, H. Kamada, H. Krebs, H. Le, U.-G. Meißner, J.A. Melendez, A. Nogga, P. Reinert, R. Skibiński, J.P. Vary, H. Witała, T. Wolfgruber, Nuclear properties with semilocal momentum-space regularized chiral interactions beyond \({\rm n\mathit{}^{2}\rm LO}\). Phys. Rev. C 106, 064002 (2022). https://doi.org/10.1103/PhysRevC.106.064002

    Article  ADS  Google Scholar 

  23. S. Cohen, D. Kurath, Effective interactions for the 1p shell. Nucl. Phys. 73(1), 1–24 (1965). https://doi.org/10.1016/0029-5582(65)90148-3

    Article  Google Scholar 

  24. P. Jordan, E. Wigner, Über das paulische äquivalenzverbot. Zeitschrift für Physik 47(9), 631–651 (1928). https://doi.org/10.1007/BF01331938

    Article  ADS  Google Scholar 

  25. M. Abramowitz, I.A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, ninth dover printing, tenth GPO, printing. (Dover, New York, 1964)

    Google Scholar 

  26. S.B. Bravyi, A.Y. Kitaev, Fermionic quantum computation. Ann. Phys. 298(1), 210–226 (2002). https://doi.org/10.1006/aphy.2002.6254

    Article  ADS  MathSciNet  Google Scholar 

  27. A. Tranter, S. Sofia, J. Seeley, M. Kaicher, J. McClean, R. Babbush, P.V. Coveney, F. Mintert, F. Wilhelm, P.J. Love, The Bravyi–Kitaev transformation: properties and applications. Int. J. Quantum Chem. 115(19), 1431–1441 (2015). https://doi.org/10.1002/qua.24969

    Article  Google Scholar 

  28. A. Tranter, P.J. Love, F. Mintert, P.V. Coveney, A comparison of the Bravyi–Kitaev and Jordan–Wigner transformations for the quantum simulation of quantum chemistry. J. Chem. Theory Comput. 14(11), 5617–5630 (2018)

    Article  Google Scholar 

  29. J.T. Seeley, M.J. Richard, P.J. Love, The Bravyi–Kitaev transformation for quantum computation of electronic structure. J. Chem. Phys. 137(22), 224109 (2012). https://doi.org/10.1063/1.4768229

    Article  ADS  Google Scholar 

  30. S. McArdle, S. Endo, A. Aspuru-Guzik, S.C. Benjamin, X. Yuan, Quantum computational chemistry. Rev. Mod. Phys. 92, 015003 (2020). https://doi.org/10.1103/RevModPhys.92.015003

    Article  ADS  MathSciNet  Google Scholar 

  31. D.W. Berry, M. Kieferová, A. Scherer, Y.R. Sanders, G.H. Low, N. Wiebe, C. Gidney, R. Babbush, Improved techniques for preparing eigenstates of fermionic Hamiltonians. npj Quantum Inform. 4(1), 22 (2018). https://doi.org/10.1038/s41534-018-0071-5

    Article  ADS  Google Scholar 

  32. Y. Shee, P.-K. Tsai, C.-L. Hong, H.-C. Cheng, H.-S. Goan, Qubit-efficient encoding scheme for quantum simulations of electronic structure. Phys. Rev. Res. 4, 023154 (2022). https://doi.org/10.1103/PhysRevResearch.4.023154

    Article  Google Scholar 

  33. J.P. Vary, The many-fermion-dynamics shell-model code (Iowa State University, Iowa, 1992). (unpublished)

    Google Scholar 

  34. B.A. Brown, W.D.M. Rae, The shell-model code nushellx@msu. Nuclear Data Sheets 120, 115–118 (2014). https://doi.org/10.1016/j.nds.2014.07.022

    Article  ADS  Google Scholar 

  35. T. Dytrych, P. Maris, K.D. Launey, J.P. Draayer, J.P. Vary, D. Langr, E. Saule, M.A. Caprio, U. Catalyurek, M. Sosonkina, Efficacy of the su(3) scheme for ab initio large-scale calculations beyond the lightest nuclei. Comput. Phys. Commun. 207, 202–210 (2016). https://doi.org/10.1016/j.cpc.2016.06.006

    Article  ADS  Google Scholar 

  36. C.W. Johnson, W.E. Ormand, K.S. McElvain, H. Shan, BIGSTICK: a flexible configuration-interaction shell-model code. arXiv:1801.08432 [physics.comp-ph] (2018)

  37. O. Di Matteo, A. McCoy, P. Gysbers, T. Miyagi, R.M. Woloshyn, P. Navrátil, Improving Hamiltonian encodings with the gray code. Phys. Rev. A 103, 042405 (2021). https://doi.org/10.1103/PhysRevA.103.042405

    Article  ADS  MathSciNet  Google Scholar 

  38. B.H. Wildenthal, Empirical strengths of spin operators in nuclei. Progress Particle Nuclear Phys. 11, 5–51 (1984). https://doi.org/10.1016/0146-6410(84)90011-5

    Article  ADS  Google Scholar 

  39. B.A. Brown, W.A. Richter, New USD Hamiltonians for the \(\mathit{sd}\) shell. Phys. Rev. C 74, 034315 (2006). https://doi.org/10.1103/PhysRevC.74.034315

    Article  ADS  Google Scholar 

  40. Y. Ge, J. Tura, J.I. Cirac, Faster ground state preparation and high-precision ground energy estimation with fewer qubits. J. Math. Phys. 60, 022202 (2019). https://doi.org/10.1063/1.5027484

    Article  ADS  MathSciNet  Google Scholar 

  41. M. Motta, C. Sun, A.T.K. Tan, M.J. O’Rourke, E. Ye, A.J. Minnich, F.G.S.L. Brandão, G.K.-L. Chan, Determining eigenstates and thermal states on a quantum computer using quantum imaginary time evolution. Nat. Phys. 16(2), 205–210 (2020). https://doi.org/10.1038/s41567-019-0704-4. arXiv:1901.07653 [quant-ph]

    Article  Google Scholar 

  42. K. Choi, D. Lee, J. Bonitati, Z. Qian, J. Watkins, Rodeo algorithm for quantum computing. Phys. Rev. Lett. 127, 040505 (2021). https://doi.org/10.1103/PhysRevLett.127.040505

    Article  ADS  MathSciNet  Google Scholar 

  43. P. Jouzdani, C.W. Johnson, E.R. Mucciolo, I. Stetcu, Alternative approach to quantum imaginary time evolution. Phys. Rev. A 106, 062435 (2022). https://doi.org/10.1103/PhysRevA.106.062435

    Article  ADS  Google Scholar 

  44. D. Lacroix, Symmetry-assisted preparation of entangled many-body states on a quantum computer. Phys. Rev. Lett. 125, 230502 (2020). https://doi.org/10.1103/PhysRevLett.125.230502

    Article  ADS  MathSciNet  Google Scholar 

  45. E.A. Ruiz Guzman, D. Lacroix, Accessing ground-state and excited-state energies in a many-body system after symmetry restoration using quantum computers. Phys. Rev. C 105, 024324 (2022). https://doi.org/10.1103/PhysRevC.105.024324

    Article  ADS  Google Scholar 

  46. R. Somma, G. Ortiz, J.E. Gubernatis, E. Knill, R. Laflamme, Simulating physical phenomena by quantum networks. Phys. Rev. A 65, 042323 (2002). https://doi.org/10.1103/PhysRevA.65.042323

    Article  ADS  Google Scholar 

  47. J. Calrson, Improved state preparation with projection algorithm. in preparation (2024)

  48. A. Li, B. Fang, C. Granade, G. Prawiroatmodjo, B. Heim, M. Roetteler, S. Krishnamoorthy, Sv-sim: scalable pgas-based state vector simulation of quantum circuits. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–14 (2021)

  49. A. Li, O. Subasi, X. Yang, S. Krishnamoorthy, Density matrix quantum circuit simulation via the bsp machine on modern gpu clusters. In: SC20: International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–15 (2020). IEEE

  50. T. Grurl, R. Kueng, J. Fuß, R. Wille, Stochastic quantum circuit simulation using decision diagrams. In: 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 194–199 IEEE (2021)

  51. T. Nguyen, D. Lyakh, E. Dumitrescu, D. Clark, J. Larkin, A. McCaskey, Tensor network quantum virtual machine for simulating quantum circuits at exascale. arXiv:2104.10523 (2021)

  52. S. Aaronson, D. Gottesman, Improved simulation of stabilizer circuits. Phys. Rev. A 70(5), 052328 (2004)

    Article  ADS  Google Scholar 

  53. X. Fu, M.A. Rol, C.C. Bultink, J. Van Someren, N. Khammassi, I. Ashraf, R. Vermeulen, J. De Sterke, W. Vlothuizen, R. Schouten, et al. An experimental microarchitecture for a superconducting quantum processor. In: Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture, pp. 813–825 (2017)

  54. T. Jones, A. Brown, I. Bush, S.C. Benjamin, Quest and high performance simulation of quantum computers. Sci. Rep. 9(1), 1–11 (2019)

    Article  Google Scholar 

  55. Y.-T. Chen, C. Farquhar, R.M. Parrish, Low-rank density-matrix evolution for noisy quantum circuits. npj Quantum Inform. 7(1), 1–12 (2021)

    Article  Google Scholar 

  56. I.L. Markov, Y. Shi, Simulating quantum computation by contracting tensor networks. SIAM J. Comput. 38(3), 963–981 (2008)

    Article  MathSciNet  Google Scholar 

  57. D.M. Miller, M.A. Thornton, D. Goodman, A decision diagram package for reversible and quantum circuit simulation. In: 2006 IEEE International Conference on Evolutionary Computation, pp. 2428–2435 IEEE (2006)

  58. T. Grurl, J. Fuß, R. Wille, Considering decoherence errors in the simulation of quantum circuits using decision diagrams. In: Proceedings of the 39th International Conference on Computer-Aided Design, pp. 1–7 (2020)

  59. S. Bravyi, D. Browne, P. Calpin, E. Campbell, D. Gosset, M. Howard, Simulation of quantum circuits by low-rank stabilizer decompositions. Quantum 3, 181 (2019)

    Article  Google Scholar 

  60. D.C. McKay, T. Alexander, L. Bello, M.J. Biercuk, L. Bishop, J. Chen, J. M. Chow, A.D. Córcoles, D. Egger, S. Filipp, et al. Qiskit backend specifications for openqasm and openpulse experiments. arXiv:1809.03452 (2018)

  61. A. Barenco, C.H. Bennett, R. Cleve, D.P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J.A. Smolin, H. Weinfurter, Elementary gates for quantum computation. Phys. Rev. A 52(5), 3457 (1995)

    Article  ADS  Google Scholar 

  62. A. Cross, The ibm q experience and qiskit open-source quantum computing software. In: APS March Meeting Abstracts, 2018, 58–003 (2018)

  63. Microsoft: What are Q# and the Quantum Development Kit? https://learn.microsoft.com/en-us/azure/quantum/overview-what-is-qsharp-and-qdk. Accessed: 16 Aug 2023

  64. T.M. Mintz, A.J. Mccaskey, E.F. Dumitrescu, S.V. Moore, S. Powers, P. Lougovski, Qcor: a language extension specification for the heterogeneous quantum-classical model of computation. ACM J. Emerg. Technol. Comput. Syst. (JETC) 16(2), 1–17 (2020)

    Article  Google Scholar 

  65. A.W. Cross, L.S. Bishop, J.A. Smolin, J.M. Gambetta, Open quantum assembly language. arXiv:1707.03429 (2017)

  66. Microsoft: Quantum intermediate representation (2023). https://learn.microsoft.com/en-us/azure/quantum/concepts-qir

  67. M. Smelyanskiy, N.P. Sawaya, A. Aspuru-Guzik, qhipster: The quantum high performance software testing environment. arXiv:1601.07195 (2016)

  68. T. Häner, D.S. Steiger, 5 petabyte simulation of a 45-qubit quantum circuit. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–10 (2017)

  69. M. Broughton, G. Verdon, T. McCourt, A.J. Martinez, J.H. Yoo, S.V. Isakov, P. Massey, R. Halavati, M.Y. Niu, A. Zlokapa et al., Tensorflow quantum: A software framework for quantum machine learning. arXiv:2003.02989 (2020)

  70. Y. Suzuki, Y. Kawase, Y. Masumura, Y. Hiraga, M. Nakadai, J. Chen, K.M. Nakanishi, K. Mitarai, R. Imai, S. Tamiya et al., Qulacs: a fast and versatile quantum circuit simulator for research purpose. Quantum 5, 559 (2021)

    Article  Google Scholar 

  71. B. Fang, M.Y. Özkaya, A. Li, Ü.V. Çatalyürek, S. Krishnamoorthy, Efficient hierarchical state vector simulation of quantum circuits via acyclic graph partitioning. In: 2022 IEEE International Conference on Cluster Computing (CLUSTER), pp. 289–300 (2022). IEEE

  72. T.T.S. Kuo, G.E. Brown, Reaction matrix elements for the 0f–1p shell nuclei. Nuclear Phys. A 114(2), 241–279 (1968). https://doi.org/10.1016/0375-9474(68)90353-9

    Article  ADS  Google Scholar 

  73. A. Poves, A. Zuker, Theoretical spectroscopy and the fp shell. Phys. Rep. 70(4), 235–314 (1981). https://doi.org/10.1016/0370-1573(81)90153-8

    Article  ADS  Google Scholar 

  74. I. Stetcu, C.W. Johnson, Random phase approximation vs exact shell-model correlation energies. Phys. Rev. C 66, 034301 (2002). https://doi.org/10.1103/PhysRevC.66.034301

    Article  ADS  Google Scholar 

  75. A. Roggero, C. Gu, A. Baroni, T. Papenbrock, Preparation of excited states for nuclear dynamics on a quantum computer. Phys. Rev. C 102, 064624 (2020). https://doi.org/10.1103/PhysRevC.102.064624

    Article  ADS  Google Scholar 

  76. A.M. Childs, N. Wiebe, Hamiltonian simulation using linear combinations of unitary operations 12(11–12), 901–924 (2012)

  77. A.M. Childs, R. Kothari, R.D. Somma, Quantum algorithm for systems of linear equations with exponentially improved dependence on precision. SIAM J. Comput. 46(6), 1920–1950 (2017). https://doi.org/10.1137/16M1087072

    Article  MathSciNet  Google Scholar 

  78. Z. Holmes, G. Muraleedharan, R.D. Somma, Y. Subasi, B. Şahinoğlu, Quantum algorithms from fluctuation theorems: Thermal-state preparation. arXiv:2203.08882 [quant-ph] (2022)

  79. V.V. Shende, S.S. Bullock, I.L. Markov, Synthesis of quantum-logic circuits. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 25(6), 1000–1010 (2006). https://doi.org/10.1109/TCAD.2005.855930

    Article  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the US Department of Energy, Office of Science, National Quantum Information Science Research Centers, Quantum Science Center (QSC). TSH, AL, and AB acknowledge QSC support for advances in numerical simulation methods and quantum circuit synthesis. The work of IS was carried out under the auspices of the National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory under Contract No. 89233218CNA000001. IS gratefully acknowledge partial support by the Advanced Simulation and Computing (ASC) Program. This research used resources of the Oak Ridge Leadership Computing Facility (OLCF), which is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725. This research used resources of the National Energy Research Scientific Computing Center (NERSC), a US Department of Energy Office of Science User Facility located at Lawrence Berkeley National Laboratory, operated under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Travis S. Humble.

Ethics declarations

Code availability statement

Code/software will be made available on reasonable request. [Author’s comment: The Jordan-Wigner mapped nuclear Hamiltonian used to generate the results, as well as the simulation results will be made available upon reasonable request.]

Notice

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a non-exclusive, paid up, irrevocable, world-wide license to publish or reproduce the published form of the manuscript, or allow others to do so, for U.S. Government purposes. The DOE will provide public access to these results in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Additional information

Communicated by Thomas Duguet.

Implementation of the Ge et al. algorithm

Implementation of the Ge et al. algorithm

We briefly review here the algorithm used for state preparation that follows the work of Ref. [40] and describe how it has been implemented. We consider an Hamiltonian with spectrum in an interval \(I\in (0,1)\), spectral gap \(\Delta \), an initial trial state \(|{\Phi } \rangle \) with overlap \(\chi \) with the ground state \(|{\Psi _0} \rangle \), and we assume we know the ground state energy E. After defining the shifted Hamiltonian \(H^\prime =H-E\,\textbf{1}\) the state defined below

$$\begin{aligned} |{\tilde{\Phi }} \rangle =\frac{\cos ^M(H^\prime )}{||\cos ^M(H^\prime ) ||}|{\Phi } \rangle \end{aligned}$$
(13)

becomes close to the exact ground state, if the power of M is chosen as in Ref. [40]. It is possible to approximate the operator in Eq.  (13) as a linear combination of unitaries in the following way:

$$\begin{aligned} \cos ^{2m}H^\prime =\sum _{k=-m_0}^{m_0}\alpha _k e^{-2iHk}+R\,, \end{aligned}$$
(14)

with

$$\begin{aligned} \alpha _k=\frac{1}{4^m}\left( {\begin{array}{c}2m\\ m+k\end{array}}\right) \,. \end{aligned}$$
(15)

and \(m_0\) properly chosen in order to vanish the quantity of R, a prescription is provided in Ref. [40]. The implementation of the above operator can be done using Linear Combination of Unitaries using the Prepare and Select oracles of Ref. [75] and briefly reviewed below. Given the \(2m_0+1\) unitaries of Eq. 14 we define an ancillary register of dimension \(n_A=\lceil \log _2(2m_0+1)\rceil \). We can implement a block encoding of the linear combination of unitaries using the algorithm originally developed in Ref. [76, 77] and using the approach reported in Ref. [78]. In particular we first need a prepare operator P acting only on the ancillary register defined by the following equation:

$$\begin{aligned} P|{0} \rangle= & {} \frac{1}{\sqrt{\alpha }}\sum _{k=0}^{2m_0}(\alpha _{-2m_0+k})^{1/2}|{k} \rangle \,, \end{aligned}$$
(16)

and \(\alpha =\sum _{k=-m_0}^{m_0}|\alpha _k|\). Following Ref. [78] for the general case the gate decomposition of the unitary P can be done using generic circuit synthesis as originally reported in Ref. [79] whose exponential scaling should not be a limitation for the problems at hand (i. e. for \(10^3\) unitaries only 10 ancillary qubits will be needed). After we define the select oracle, acting both on the ancillary register and the target register, in the following way

$$\begin{aligned} S= & {} \sum _{k=0}^{2m_0+1}|{k} \rangle \langle {k} |\otimes U^k\,, \end{aligned}$$
(17)

where \(U=e^{-2iH}\). Although the implementetion in principle requires applying several multi-controlled unitaries, in Ref. [78], Lemma 3.5, has been shown that only a number of single controlled unitaries equal to the number of ancillary qubits are necessary and sufficient. Therefore the implementation of the Linear-combination-of-unitaries (LCU) method for the problem at hand can be expressed as in Fig. 2 of Ref. [78]. We are now ready to discuss the success probability of the procedure that is similar to Ref. [75]. Specifically, we define the following quantity:

$$\begin{aligned} \eta ^2= & {} \langle {\Phi } | O^2|{\Phi } \rangle \,, \end{aligned}$$
(18)

for which we have defined the operator \(O=\sum _{k=-m_0}^{m_0}\alpha _k U^k\). The success probability of postselecting all 0s on the ancillary qubit is thus:

$$\begin{aligned} P_s= & {} \frac{\eta ^2}{\alpha ^2}\,. \end{aligned}$$
(19)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, A., Baroni, A., Stetcu, I. et al. Deep quantum circuit simulations of low-energy nuclear states. Eur. Phys. J. A 60, 106 (2024). https://doi.org/10.1140/epja/s10050-024-01286-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-024-01286-7

Navigation