Skip to main content
Log in

Perspective on superconducting qubit quantum computing

  • Review
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

This perspective describes the history, scientific and technology developments of superconducting qubit-based quantum computers, which are currently dominant, particularly with industry vendors. Adopting an engineering viewpoint, it showcases the great diversity of technology options, explains how superconducting qubit chipsets are manufactured, describes some challenges with how qubits are driven by classical electronics, how to improve their fidelities and how their energetic footprint can be optimized. We also briefly describe the current status of so-called NISQ (noisy intermediate scale quantum) computers and the resource estimations to run their potential use cases, particularly for running quantum many-body physics simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: There is no data provided with the paper since this is a review paper, not a paper with specific experimental results.]

Notes

  1. T1 is the qubit amplitude coherence time, which indicates the end of coherence of the qubits linked to a loss of amplitude (“energy relaxation”). T2 is the phase related coherence or time when some phase shift occurs, i.e. a rotation around the z axis in the Bloch sphere of the qubit state.

  2. Transmon is a diminutive of “Transmission line shunted plasmon oscillation circuit” created by Rob Schoelkopf, in other words, an oscillator circuit based on shunted Josephson junction. The shunt has become a capacitance that filters low frequencies. A plasmon is the collective behavior of free electrons of metals, here in the form of superconducting Cooper pairs.

  3. An X-Y addressing scheme would route signals to the qubit resonators from the edge of the chipset, X and Y corresponding to two orthogonal edges. You would then polynomialy reduce the number of resonators from N to \(\sqrt{N}\) with N being the number of qubits of a square matrix layout chipset.

References

  1. M. Kjaergaard et al., Superconducting qubits: current state of play. Annu. Rev. Condens. Matter Phys. 11(1), 369–395 (2020). https://doi.org/10.1146/annurev-conmatphys-031119-050605

    Article  ADS  Google Scholar 

  2. S. Xu et al. Digital simulation of non-abelian anyons with 68 programmable superconducting qubits. arXiv (2022). https://doi.org/10.1103/RevModPhys.92.015003

  3. J. Martinis, M. Devoret, J. Clarke, Energy-level quantization in the zero-voltage state of a current-biased Josephson junction. Phys. Rev. Lett. (1985). https://doi.org/10.1103/PhysRevLett.55.1543

    Article  Google Scholar 

  4. O. Ezratty, Understanding quantum technologies 2022, arXiv (2022). https://doi.org/10.48550/arXiv.2111.15352

  5. P.W. Anderson, J.M. Rowell, Probable observation of the Josephson superconducting tunneling effect. Phys. Rev. Lett. (1963). https://doi.org/10.1103/PhysRevLett.10.230

    Article  Google Scholar 

  6. Y.. Nakamura, Y.. Pashkin, J..-S.. Tsai, Coherent control of macroscopic quantum states in a single-cooper-pair box. Nature (1999). https://doi.org/10.1038/19718

    Article  Google Scholar 

  7. H.. Mooij, Superconducting quantum bits. Phys. World (2004). https://doi.org/10.1088/2058-7058/17/12/30

    Article  Google Scholar 

  8. V. Schmidt, Design, fabrication and test of a four superconducting quantum-bit processor (2015). https://theses.hal.science/tel-01214394/document

  9. A. Blais, R.-S. Huang, A. Wallraff, S. Girvin, R. Schoelkopf, Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys Rev A (2004). https://doi.org/10.1103/physreva.69.062320

    Article  Google Scholar 

  10. A. Wallraff, D. Schuster, A. Blais, S. Girvin, R. Schoelkopf et al., Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature (2004). https://doi.org/10.1038/nature02851

    Article  Google Scholar 

  11. M.H. Devoret, A. Wallraff, J.M. Martinis, Superconducting qubits: a short review, arXiv (2004). https://doi.org/10.48550/arXiv.cond-mat/0411174

  12. S. Girvin, M. Devoret, R. Schoelkopf, Circuit QED and engineering charge based superconducting qubits. Phys. Scr. (2009). https://doi.org/10.1088/0031-8949/2009/t137/014012

    Article  MATH  Google Scholar 

  13. D. Schuster, Circuit Quantum Electrodynamics (2007). https://rsl.yale.edu/sites/default/files/files/RSL_Theses/SchusterThesis.pdf

  14. Y. Reshitnyk et al., 3D microwave cavity with magnetic flux control and enhanced quality factor. EPJ Quant. Technol. (2016). https://doi.org/10.1140/epjqt/s40507-016-0050-8

    Article  Google Scholar 

  15. H. Paik, M. Devoret et al., Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. Phys. Rev. Lett. (2011). https://doi.org/10.1103/physrevlett.107.240501

    Article  Google Scholar 

  16. J. Koch, T.M. Yu, J. Gambetta, A. Houck, D. Schuster, J. Majer, A. Blais, M. Devoret, S. Girvin, R. Schoelkopf, Charge insensitive qubit design derived from the Cooper pair box. Phys. Rev. A (2007). https://doi.org/10.1103/physreva.76.042319

    Article  Google Scholar 

  17. N.K. Langford, Circuit QED–Lecture Notes, arXiv (2013). https://doi.org/10.48550/arXiv.1310.1897

  18. A. Dewes, R. Lauro, F.R. Ong, V. Schmitt, P. Milman, P. Bertet, D. Vion, D. Esteve, Quantum speeding-up of computation demonstrated in a superconducting two-qubit processor. Phys Rev B (2012). https://doi.org/10.1103/PhysRevB.85.140503

    Article  Google Scholar 

  19. B.R. Johnson, Controlling Photons in Superconducting Electrical Circuits (2011). https://rsl.yale.edu/sites/default/files/files/RSL_Theses/johnson-thesis.pdf

  20. A. Houck, J. Gambetta, M. Devoret, R. Schoelkopf et al., Controlling the spontaneous emission of a superconducting transmon qubit. Phys. Rev. Lett. (2008). https://doi.org/10.1103/physrevlett.101.080502

    Article  Google Scholar 

  21. E.A. Sete et al., Quantum theory of a bandpass Purcell filter for qubit readout. Phys. Rev. Lett. (2015). https://doi.org/10.1103/physreva.92.012325

    Article  Google Scholar 

  22. M. Reagor, H. Paik et al., Reaching 10 ms single photon lifetimes for superconducting aluminum cavities. Appl. Phys. Lett. (2013). https://doi.org/10.1063/1.4807015

    Article  Google Scholar 

  23. A. O’Connell, J. Martinis, A. Cleland et al., Quantum ground state and single-phonon control of a mechanical resonator. Nature (2010). https://doi.org/10.1038/nature08967

    Article  Google Scholar 

  24. R. Barends, J. Martinis, A. Cleland, Coherent Josephson qubit suitable for scalable quantum integrated circuits. Phys. Rev. Lett. (2013). https://doi.org/10.1103/physrevlett.111.080502

    Article  Google Scholar 

  25. J. Rahamim, P. Leek et al., Double-sided coaxial circuit QED with out-of-plane wiring. Appl. Phys. Lett. (2017). https://doi.org/10.1063/1.4984299

    Article  Google Scholar 

  26. E. Hyyppä, M. Möttönen, et al. Unimon qubit, arXiv (2022). https://doi.org/10.1038/s41467-022-34614-w

  27. E. Lucero, J. Martinis et al., Computing prime factors with a Josephson phase qubit quantum processor. Nat. Phys. (2012). https://doi.org/10.1038/nphys2385

    Article  Google Scholar 

  28. M. Lyatti, Energy-level quantization and single-photon control of phase slips in YBa2Cu3O7-x nanowires. Nat. Commun. (2020). https://doi.org/10.1038/s41467-020-14548-x

    Article  Google Scholar 

  29. F. Bao et al., Fluxonium: an alternative qubit platform for high-fidelity operations. Phys. Rev. Lett. (2022). https://doi.org/10.1103/physrevlett.129.010502

    Article  Google Scholar 

  30. L.B. Nguyen, I. Siddiqi et al., Blueprint for a high-performance fluxonium quantum processor. PRX Quant. (2022). https://doi.org/10.1103/prxquantum.3.037001

    Article  Google Scholar 

  31. A. Somoroff, V. Manucharyan et al, Millisecond Coherence in a Superconducting Qubit, arXiv (2021). arXiv:https://arxiv.org/abs/2103.08578

  32. L.B. Nguyen, V.E. Manucharyan, et al. The High-Coherence Fluxonium Qubit, arXiv (2018). https://doi.org/10.1103/physrevx.9.041041

  33. I.N. Moskalenko, High Fidelity Two-Qubit Gates on Fluxoniums Using a Tunable Coupler, arXiv (2022). https://doi.org/10.1038/s41534-022-00644-x

  34. E. Hubenschmid, Transmon and Fluxonium Qubits, arXiv (2020). https://theorie.physik.uni-konstanz.de/burkard/sites/default/files/images/Seminar_3_TrFl.pdf

  35. Y.-H. Lin, L.B. Nguyen, N. Grabon, J.S. Miguel, N. Pankratova, V.E. Manucharyan, Demonstration of protection of a superconducting qubit from energy decay. Phys. Rev. Lett. (2018). https://doi.org/10.1103/PhysRevLett.120.150503

    Article  Google Scholar 

  36. L.B. Nguyen, Y.-H. Lin, A. Somoroff, R. Mencia, N. Grabon, V.E. Manucharyan, High-coherence fluxonium qubit. Phys. Rev. Lett. (2018). https://doi.org/10.1103/PhysRevX.9.041041

    Article  Google Scholar 

  37. H. Zhang, S. Chakram, T. Roy, N. Earnest, Y. Lu, Z. Huang, D.K. Weiss, J. Koch, D.I. Schuster, Universal fast-flux control of a coherent, low-frequency qubit. Phys. Rev. X (2021). https://doi.org/10.1103/PhysRevX.11.011010

    Article  Google Scholar 

  38. J. Koch, J. Gambetta, A. Blais, M. Devoret, R. Schoelkopf et al., Charge insensitive qubit design derived from the Cooper pair box. Phys. Rev. A (2007). https://doi.org/10.1103/physreva.76.042319

    Article  Google Scholar 

  39. R. Zhao et al. Merged-Element Transmon, arXiv (2020). https://doi.org/10.1103/physrevapplied.14.064006

  40. H.J. Mamin et al, Merged-Element Transmons: Design and Qubit Performance, arXiv (2021). https://doi.org/10.1103/physrevapplied.16.024023

  41. M. Devoret, Implementing qubits with superconducting integrated circuits. Quant. Inf. Process. (2004). https://doi.org/10.1007/s11128-004-3101-5

    Article  MathSciNet  MATH  Google Scholar 

  42. C. Yu, H. Wang, C. Shi, J. Hu, S. Han, R. Wu, R. McDermott, P. Kumar, J. Freeland, D. Pappas, Flux Noise in Superconducting Qubits (2015). https://cmsr.rutgers.edu/docman-lister/cmsr/1330-clare-yu/file

  43. A. Zazunov et al., Andreev level qubit. Phys. Rev. Lett. (2003). https://doi.org/10.1103/physrevlett.90.087003

    Article  Google Scholar 

  44. A. Zazunov et al., Dynamics and phonon-induced decoherence of Andreev level qubit. PRB (2005). https://doi.org/10.1103/physrevb.71.214505

    Article  Google Scholar 

  45. C. Janvier, Coherent Manipulation of Andreev Bound States in an Atomic Contact (2016). https://doi.org/10.48550/arXiv.1509.03961

  46. M. Hays, M. Devoret et al., Coherent manipulation of an Andreev spin qubit. Science (2021). https://doi.org/10.1126/science.abf0345

    Article  MathSciNet  MATH  Google Scholar 

  47. M. Pita-Vidal et al, Direct Manipulation of a Superconducting Spin Qubit Strongly Coupled to a Transmon Qubit, arXiv (2022). https://doi.org/10.48550/arXiv.2208.10094

  48. V. Fatemi, M.H. Devoret, Going with the grains. Science 372(6541), 464 (2021). https://doi.org/10.1126/science.abd8556

    Article  ADS  Google Scholar 

  49. C. Metzger, C. Urbina, H. Pothier et al., Circuit-QED with Phase-Biased Josephson Weak Links arXiv (2021). https://doi.org/10.1103/physrevresearch.3.013036

  50. A. Joshi et al., Quantum information processing with bosonic qubits in circuit QED. Quant. Sci. Technol. (2021). https://doi.org/10.1088/2058-9565/abe989

    Article  Google Scholar 

  51. Y. Wang, Quantum Error Correction with the GKP Code and Concatenation with Stabilizer Codes, arXiv (2019). https://doi.org/10.48550/arXiv.1908.00147

  52. A. Gyenis, A. Blais, A.A. Hook, D.I. Schuster et al., Moving Beyond the Transmon: Noise-Protected Superconducting Quantum Circuits, arXiv (2021). https://doi.org/10.1103/prxquantum.2.030101

  53. W.C. Smith, A. Kou, X. Xiao, U. Vool, M.H. Devoret, Superconducting circuit protected by two-Cooper-pair tunneling. NPI Quant. Inf. (2020). https://doi.org/10.1038/s41534-019-0231-2

    Article  Google Scholar 

  54. B. Royer, S. Sing, S.M. Girvin, Encoding Qubits in Multimode Grid States, arXiv (2022). https://doi.org/10.1103/prxquantum.3.010335

  55. M. Zanner et al., Coherent control of a multi-qubit dark state in waveguide quantum electrodynamics. Nat. Phys. (2022). https://doi.org/10.1038/s41567-022-01527-w

    Article  Google Scholar 

  56. A. Blais, A. Wallraff et al., Circuit Quantum Electrodynamics, arXiv (2020). https://doi.org/10.1103/revmodphys.93.025005

  57. P. Krantz et al., A quantum engineerś guide to superconducting qubits. Quant. Phys. (2019). https://doi.org/10.1063/1.5089550

    Article  Google Scholar 

  58. W.C. Smith et al., Superconducting circuit protected by two-Cooper-pair tunneling. NPJ Quant. Inf. (2020). https://doi.org/10.1038/s41534-019-0231-2

    Article  Google Scholar 

  59. H. Mooij, Superconducting quantum bits. Phys. World (2004). https://doi.org/10.1088/2058-7058/17/12/30

    Article  Google Scholar 

  60. M. Jerger aus Bahl, Experiments on Superconducting Qubits Coupled to Resonators (2013). https://publikationen.bibliothek.kit.edu/1000033614/2479290

  61. U. Vool, M. Devoret, Introduction to Quantum Electromagnetic Circuits, arXiv (2017). https://doi.org/10.1002/cta.2359

  62. J. Yu, E. Solano et al., Superconducting Circuit Architecture for Digital-Analog Quantum Computing, arXiv (2022). https://doi.org/10.1140/epjqt/s40507-022-00129-y

  63. A. Di Paolo, A. Blais, W.D. Oliver et al., Extensible Circuit-QED Architecture Via amplitude- and frequency-variable microwaves, arXiv (2022). https://doi.org/10.48550/arXiv.2204.08098

  64. Y. Sunada, Y. Nakamura et al., Fast Readout and Reset of a Superconducting Qubit Coupled to a Resonator with an Intrinsic Purcell Filter, arXiv (2022). https://doi.org/10.1103/physrevapplied.17.044016

  65. S. Li, J.-W. Pan et al., Realization of fast all-microwave CZ gates with a tunable coupler. Chin. Phys. Lett. (2022). https://doi.org/10.1088/0256-307x/39/3/030302

    Article  Google Scholar 

  66. X. Pan et al., Engineering Superconducting Qubits to Reduce Quasiparticles and Charge Noise, arXiv (2022). https://doi.org/10.1038/s41467-022-34727-2

  67. J. Larson, T.K. Mavrogordatos, The Jaynes–Cummings Model and Its Descendants, arXiv (2022). https://doi.org/10.48550/arXiv.2202.00330

  68. G. Xiu et al., Microwave photonics with superconducting quantum circuits. Phys. Rep. (2019). https://doi.org/10.1016/j.physrep.2017.10.002

    Article  MATH  Google Scholar 

  69. J.J. Burnett et al., Decoherence benchmarking of superconducting qubits. NPJ Quant. Inf. (2019). https://doi.org/10.1038/s41534-019-0168-5

    Article  Google Scholar 

  70. P. Krantz et al., A Quantum Engineer’s Guide to Superconducting Qubits, arXiv (2019). https://doi.org/10.48550/arXiv.1904.06560

  71. Y. Xu, I. Siddiqi et al., Radio Frequency Mixing Modules For Superconducting Qubit Room Temperature Control Systems, arXiv (2021). https://doi.org/10.1063/5.0055906

  72. N. Cottet, Energy and Information in Fluorescence with Superconducting Circuits (2018). https://hal.science/tel-02002463/

  73. N.P. Breuckmann, J.N. Eberhardt, Quantum low-density parity-check codes. Phys. Rev. X Quant. (2021). https://doi.org/10.1103/PRXQuantum.2.040101

    Article  MATH  Google Scholar 

  74. J.P.G. van Dijk et al., The Electronic Interface for Quantum Processors, arXiv (2019). https://doi.org/10.1016/j.micpro.2019.02.004

  75. R. Hicks et al., Active readout-error mitigation. Phys. Rev. A (2021). https://doi.org/10.1103/PhysRevA.105.012419

  76. M. Beisel et al., Configurable readout error mitigation in quantum workflows. Electronics (2022). https://doi.org/10.48550/arXiv.2108.12432

  77. I. Siddiqi, Superconducting Circuits Balancing Art and Architecture, QIS Kickoff 2019 (2019). https://www.orau.gov/qispi2018/plenary-talks.htm

  78. J. Gambetta et al., Investigating surface loss effects in superconducting transmon qubits. IEEE Trans. Appl. Superconduct. (2017). https://doi.org/10.1109/tasc.2016.2629670

    Article  Google Scholar 

  79. I. Holzman, Y. Ivry, On-chip integrable planar nbn nano squid with broad temperature and magnetic-field operation range. AIP Adv. (2019). https://doi.org/10.1063/1.5100259

    Article  Google Scholar 

  80. S. Kim et al., Enhanced Coherence of All-nitride Superconducting Qubits Epitaxially Grown on Silicon Substrate, arXiv (2021). https://doi.org/10.1038/s43246-021-00204-4

  81. J. Zotova et al., Compact Superconducting Microwave Resonators Based on Al-AlOx-Al Capacitor, arXiv (2022). https://doi.org/10.48550/arXiv.2203.09592

  82. A. Antony et al., Miniaturizing Transmon Qubits Using van der Waals Materials, arXiv (2021). https://doi.org/10.21203/rs.3.rs-923599/v1

  83. A. Romanenko, R. Pilipenko, S. Zorzetti, D. Frolov, M. Awida, S. Belomestnykh, S. Posen, A. Grassellino, Three-dimensional superconducting resonators at \(T<20\) mK with photon lifetimes up to \(\tau \)=2s, Phys. Rev. A (2020). https://doi.org/10.48550/arXiv.1810.03703

  84. A. Grassellino, Superconducting Quantum Materials and Systems Center. SQMS Center, Fermilab (2021). https://indico.fnal.gov/event/48767/contributions/212914/attachments/144283/183119/PAC2021SQMS.pdf

  85. A. Opremcak, R. McDermott et al., High-fidelity measurement of a superconducting qubit using an on-chip microwave photon counter. Phys. Rev. X (2021). https://doi.org/10.1103/PhysRevX.11.011027

    Article  Google Scholar 

  86. Y. Wu, J.-W. Pan et al., Strong quantum computational advantage using a superconducting quantum processor. Phys. Rev. Lett. (2021). https://doi.org/10.1103/PhysRevLett.127.180501

    Article  Google Scholar 

  87. Q. Zhu, J.-W. Pan et al., Quantum computational advantage via 60-qubit 24-cycle random circuit sampling. Sci. Bull. (2021). https://doi.org/10.1016/j.scib.2021.10.017

    Article  Google Scholar 

  88. J.F. Gonthier, M.D. Radin, C. Buda, E.J. Doskocil, C.M. Abuan, J. Romero, Measurements as a roadblock to near-term practical quantum advantage in chemistry resource analysis. Phys. Rev. Res. (2021). https://doi.org/10.1103/PhysRevResearch.4.033154

    Article  Google Scholar 

  89. M. Fellous-Asiani, J.H. Chai, Y. Thonnart, H.K. Ng, R.S. Whitney, A. Auffèves, Optimizing Resource Efficiencies For Scalable Full-stack Quantum Computers, arXiv (2022). https://doi.org/10.48550/arXiv.2209.05469

  90. A. Auffèves, Quantum technologies need a quantum energy initiative. PRX Quant. (2022). https://doi.org/10.1103/PRXQuantum.3.020101

    Article  Google Scholar 

  91. A. Auffèves, O. Ezratty, J. Spletstoesser, R. Whitney, Quantum Energy Initiative (2022). https://quantum-energy-initiative.org/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Ezratty.

Additional information

Communicated by Denis Lacroix.

Olivier Ezratty is a cofounder of the Quantum Energy Initiative.

Topical Issue—Quantum Computing in Low-Energy Nuclear Theory.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezratty, O. Perspective on superconducting qubit quantum computing. Eur. Phys. J. A 59, 94 (2023). https://doi.org/10.1140/epja/s10050-023-01006-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-01006-7

Navigation