Skip to main content
Log in

Study of \(\bar{B}^0_{(s)}\) decaying into \(D^0\) and \(\pi ^{+}\pi ^{-}\), \(K^{+}K^{-}\), or \(\pi ^{0}\eta \) with final state interactions

  • Regular Article –Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The resonant contributions in the decays \(\bar{B}^0_{(s)} \rightarrow D^0 \pi ^{+}\pi ^{-}\), \(\bar{B}^0_{(s)} \rightarrow D^0 K^{+}K^{-}\), and \(\bar{B}^{0} \rightarrow D^{0} \pi ^{0}\eta \) are investigated by considering the final state interactions within the chiral unitary approach, where the scalar resonances \(f_{0}(500)\), \(f_{0}(980)\), and \(a_{0}(980)\) are dynamically generated from the final state interactions. In addition, the vector mesons \(\rho \), \(\phi \) and \(D^*_0(2300)\) directly produced in p wave are also taken into account. From the invariant mass distributions of \(B^{0}\) decays, it is found that the contributions of \(f_{0}(500)\) and \(a_{0}(980)\) are remarkably larger than those of \(f_{0}(980)\). However, for the case of \(B^{0}_{s}\) decays only a clear structure close to the \(K^{+} K^{-}\) threshold appears, which corresponds to the \(f_{0}(980)\) state and has no signal for the \(f_{0}(500)\) resonance. For the decay \(\bar{B}^0_s \rightarrow D^0 K^{+}K^{-}\), the \(K^{+} K^{-}\) invariant mass distributions are consistent with the experimental data up to 1.1 GeV, and the dominant contributions come from the vector meson \(\phi \). Moreover, the branching fractions and the ratios of branching fractions are also studied, some of which are compatible with the experimental measurements. The branching fraction \(\text {Br}(\bar{B}^{0} \rightarrow D^{0} a_{0}(980) [a_{0}(980) \rightarrow \pi ^{0}\eta ])=(6.08 \pm 0.72)\times 10^{-5}\) and the ratio of branching fractions \(\text {Br}(\bar{B}^{0}\rightarrow D^0 f_{0}(980))/\text {Br}(\bar{B}^{0}\rightarrow D^0 a_{0}(980))=0.13 \pm 0.03\) are predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: There is no data deposited in our theoretical evaluation, where the experimental data is taken from corresponding refference.]

Notes

  1. Note that the contribution of the \(D^*(2010)^+\) resonance was removed by requiring \(m(D^0 \pi ^+)>2.1 \) GeV/c in Ref. [12], where only the possible contributions from its tail were taken into account. In Ref. [11], its contributions were also excluded with similar constraints. Furthermore, the resonance \(D^*_0(2400)\) is now called \(D^*_0(2300)\) [68] after the results of Refs. [69, 70].

  2. Note that the Riemann sheets concerned here are the ones with lower channels being open one by one. There may be shadow poles in the other Riemann sheets.

References

  1. E. Eckhart et al. [CLEO], Phys. Rev. Lett. 89, 251801 (2002). arXiv:hep-ex/0206024

  2. J.P. Lees et al. [BaBar], Phys. Rev. D 85, 112010 (2012). arXiv:1201.5897 [hep-ex]

  3. Y. Nakahama et al. [Belle], Phys. Rev. D 82, 073011 (2010). arXiv:1007.3848 [hep-ex]

  4. R. Aaij et al. [LHCb], Phys. Lett. B 698, 115–122 (2011). arXiv:1102.0206 [hep-ex]

  5. R. Aaij et al. [LHCb], Phys. Rev. D 95(1), 012006 (2017). arXiv:1610.05187 [hep-ex]

  6. R. Aaij et al. [LHCb], JHEP 06, 114 (2019). arXiv:1902.07955 [hep-ex]

  7. R. Aaij et al. [LHCb], Phys. Rev. D 101(1), 012006 (2020). arXiv:1909.05212 [hep-ex]

  8. R. Aaij et al. [LHCb], Phys. Rev. D 102, 112003 (2020). arXiv:2009.00026 [hep-ex]

  9. R. Aaij et al. [LHCb], JHEP 08, 037 (2017). arXiv:1704.08217 [hep-ex]

  10. R. Aaij et al. [LHCb], Phys. Rev. D 102, 112010 (2020). arXiv:2010.11802 [hep-ex]

  11. A. Kuzmin et al. [Belle], Phys. Rev. D 76, 012006 (2007). arXiv:hep-ex/0611054

  12. R. Aaij et al. [LHCb], Phys. Rev. D 92(3), 032002 (2015). arXiv:1505.01710 [hep-ex]

  13. R. Aaij et al. [LHCb], JHEP 08, 005 (2015). arXiv:1505.01654 [hep-ex]

  14. R. Aaij et al. [LHCb], Phys. Rev. D 98(7), 071103 (2018). arXiv:1807.01892 [hep-ex]

  15. R. Aaij et al. [LHCb], Phys. Rev. D 98(7), 072006 (2018). arXiv:1807.01891 [hep-ex]

  16. Y.J. Shi, U.G. Meißner, Z.X. Zhao. arXiv:2111.05647 [hep-ph]

  17. S.H. Zhou, R.H. Li, Z.Y. Wei, C.D. Lu. arXiv:2107.11079 [hep-ph]

  18. L. Yang, Z.T. Zou, Y. Li, X. Liu, C.H. Li, Phys. Rev. D 103(11), 113005 (2021). arXiv:2103.15031 [hep-ph]

    ADS  Google Scholar 

  19. Z.Q. Zhang, S.Y. Wang, X.K. Ma, Phys. Rev. D 93(5), 054034 (2016). arXiv:1601.04137 [hep-ph]

    ADS  Google Scholar 

  20. Y. Xing, Z.P. Xing, Chin. Phys. C 43(7), 073103 (2019). arXiv:1903.04255 [hep-ph]

    ADS  Google Scholar 

  21. Y. Li, D.C. Yan, Z. Rui, L. Liu, Y.T. Zhang, Z.J. Xiao, Phys. Rev. D 102(5), 056017 (2020). arXiv:2007.13629 [hep-ph]

    ADS  Google Scholar 

  22. Z.T. Zou, Y. Li, Q.X. Li, X. Liu, Eur. Phys. J. C 80(5), 394 (2020). arXiv:2003.03754 [hep-ph]

    ADS  Google Scholar 

  23. A.J. Ma, W.F. Wang, Phys. Rev. D 103(1), 016002 (2021). arXiv:2010.12906 [hep-ph]

    ADS  Google Scholar 

  24. Y. Li, D.C. Yan, J. Hua, Z. Rui, Hn. Li, Phys. Rev. D 104(9), 096014 (2021). arXiv:2105.03899 [hep-ph]

    ADS  Google Scholar 

  25. D. Boito, J.P. Dedonder, B. El-Bennich, R. Escribano, R. Kaminski, L. Lesniak, B. Loiseau, Phys. Rev. D 96(11), 113003 (2017). arXiv:1709.09739 [hep-ph]

    ADS  Google Scholar 

  26. R.T. Aoude, P.C. Magalhães, A.C. Dos Reis, M.R. Robilotta, Phys. Rev. D 98(5), 056021 (2018). arXiv:1805.11764 [hep-ph]

    ADS  Google Scholar 

  27. P.C. Magalhães, A.C. dos Reis, M.R. Robilotta, Phys. Rev. D 102(7), 076012 (2020). https://doi.org/10.1103/PhysRevD.102.076012. arXiv:2007.12304 [hep-ph]

    Article  ADS  Google Scholar 

  28. J.A. Oller, Phys. Rev. D 71, 054030 (2005). arXiv:hep-ph/0411105

    ADS  Google Scholar 

  29. W.H. Liang, J.J. Xie, E. Oset, Phys. Rev. D 92(3), 034008 (2015). arXiv:1501.00088 [hep-ph]

    ADS  Google Scholar 

  30. J.A. Oller, E. Oset, Nucl. Phys. A 620, 438 (1997). arXiv:hep-ph/9702314. Erratum: [Nucl. Phys. A 652, 407 (1999)]

  31. E. Oset, A. Ramos, Nucl. Phys. A 635, 99 (1998). arXiv:nucl-th/9711022

    ADS  Google Scholar 

  32. N. Kaiser, Eur. Phys. J. A 3, 307 (1998)

    ADS  Google Scholar 

  33. J.A. Oller, U.-G. Meißner, Phys. Lett. B 500, 263 (2001). arXiv:hep-ph/0011146

    ADS  Google Scholar 

  34. J.A. Oller, E. Oset, A. Ramos, Prog. Part. Nucl. Phys. 45, 157 (2000). arXiv:hep-ph/0002193

    ADS  Google Scholar 

  35. T. Hyodo, D. Jido, Prog. Part. Nucl. Phys. 67, 55–98 (2012). arXiv:1104.4474 [nucl-th]

    ADS  Google Scholar 

  36. W.H. Liang, E. Oset, Phys. Lett. B 737, 70–74 (2014). arXiv:1406.7228 [hep-ph]

    ADS  Google Scholar 

  37. M. Bayar, W.H. Liang, E. Oset, Phys. Rev. D 90(11), 114004 (2014). arXiv:1408.6920 [hep-ph]

    ADS  Google Scholar 

  38. W.H. Liang, J.J. Xie, E. Oset, Eur. Phys. J. C 75(12), 609 (2015). arXiv:1510.03175 [hep-ph]

    ADS  Google Scholar 

  39. E. Oset, W.H. Liang, M. Bayar, J.J. Xie, L.R. Dai, M. Albaladejo, M. Nielsen, T. Sekihara, F. Navarra, L. Roca et al., Int. J. Mod. Phys. E 25, 1630001 (2016). arXiv:1601.03972 [hep-ph]

    ADS  Google Scholar 

  40. J.A. Oller, Symmetry 12(7), 1114 (2020). arXiv:2005.14417 [hep-ph]

    ADS  Google Scholar 

  41. J.A. Oller, Prog. Part. Nucl. Phys. 110, 103728 (2020). arXiv:1909.00370 [hep-ph]

    Google Scholar 

  42. R. Garcia-Martin, R. Kaminski, J.R. Peláez, J. Ruiz de Elvira, Phys. Rev. Lett. 107, 072001 (2011). arXiv:1107.1635 [hep-ph]

    ADS  Google Scholar 

  43. M. Albaladejo, J.A. Oller, Phys. Rev. D 86, 034003 (2012). arXiv:1205.6606 [hep-ph]

    ADS  Google Scholar 

  44. J.R. Peláez, Phys. Rep. 658, 1 (2016). arXiv:1510.00653 [hep-ph]

    ADS  Google Scholar 

  45. R.L. Jaffe, Phys. Rev. D 15, 267 (1977)

    ADS  Google Scholar 

  46. R.L. Jaffe, Phys. Rev. D 15, 281 (1977)

    ADS  Google Scholar 

  47. N.N. Achasov, A.V. Kiselev, G.N. Shestakov, Phys. Rev. D 102(1), 016022 (2020). arXiv:2005.06455 [hep-ph]

    ADS  Google Scholar 

  48. N.N. Achasov, J.V. Bennett, A.V. Kiselev, E.A. Kozyrev, G.N. Shestakov, Phys. Rev. D 103(1), 014010 (2021). arXiv:2009.04191 [hep-ph]

    ADS  Google Scholar 

  49. N.N. Achasov, A.V. Kiselev, G.N. Shestakov, Phys. Rev. D 104(1), 016034 (2021). arXiv:2106.10670 [hep-ph]

  50. N.N. Achasov, S.A. Devyanin, G.N. Shestakov, Phys. Lett. B 88, 367–371 (1979)

    ADS  Google Scholar 

  51. N.N. Achasov, S.A. Devyanin, G.N. Shestakov, Sov. J. Nucl. Phys. 32(566), TF-109 (1980)

    Google Scholar 

  52. N.N. Achasov, S.A. Devyanin, G.N. Shestakov, Phys. Lett. B 96, 168–170 (1980)

    ADS  Google Scholar 

  53. N.N. Achasov, S.A. Devyanin, G.N. Shestakov, Phys. Lett. B 108, 134–139 (1982). (erratum: Phys. Lett. B 108, 435 (1982))

    ADS  Google Scholar 

  54. N.N. Achasov, V.N. Ivanchenko, Nucl. Phys. B 315, 465–476 (1989)

    ADS  Google Scholar 

  55. N.N. Achasov, Nucl. Phys. A 728, 425–438 (2003). https://doi.org/10.1016/j.nuclphysa.2003.09.002. arXiv:hep-ph/0309118

    Article  ADS  Google Scholar 

  56. R. Molina, J.J. Xie, W.H. Liang, L.S. Geng, E. Oset, Phys. Lett. B 803, 135279 (2020). arXiv:1908.11557 [hep-ph]

    Google Scholar 

  57. M.Y. Duan, J.Y. Wang, G.Y. Wang, E. Wang, D.M. Li, Eur. Phys. J. C 80(11), 1041 (2020). arXiv:2008.10139 [hep-ph]

    ADS  Google Scholar 

  58. N. Ikeno, M. Bayar, E. Oset, Eur. Phys. J. C 81(4), 377 (2021). arXiv:2102.01650 [hep-ph]

    ADS  Google Scholar 

  59. L. Roca, E. Oset, Phys. Rev. D 103(3), 034020 (2021). arXiv:2011.05185 [hep-ph]

    ADS  Google Scholar 

  60. L.R. Dai, E. Oset, L.S. Geng, Eur. Phys. J. C 82(3), 225 (2022). arXiv:2111.10230 [hep-ph]

    ADS  Google Scholar 

  61. H.A. Ahmed, Z.Y. Wang, Z.F. Sun, C.W. Xiao, Eur. Phys. J. C 81(8), 695 (2021). arXiv:2011.08758 [hep-ph]

    ADS  Google Scholar 

  62. U.-G. Meißner, J.A. Oller, Nucl. Phys. A 679, 671–697 (2001). arXiv:hep-ph/0005253

    ADS  Google Scholar 

  63. A. Bramon, A. Grau, G. Pancheri, Phys. Lett. B 283, 416–420 (1992)

    ADS  Google Scholar 

  64. J. Gasser, H. Leutwyler, Nucl. Phys. B 250, 465–516 (1985)

    ADS  Google Scholar 

  65. X.K. Guo, Z.H. Guo, J.A. Oller, J.J. Sanz-Cillero, JHEP 06, 175 (2015). arXiv:1503.02248 [hep-ph]

    ADS  Google Scholar 

  66. C.W. Xiao, U.-G. Meißner, J.A. Oller, Eur. Phys. J. A 56(1), 23 (2020). arXiv:1907.09072 [hep-ph]

    ADS  Google Scholar 

  67. Z. Wang, Y.Y. Wang, E. Wang, D.M. Li, J.J. Xie, Eur. Phys. J. C 80(9), 842 (2020). arXiv:2004.01438 [hep-ph]

    ADS  Google Scholar 

  68. R.L. Workman et al. [Particle Data Group], PTEP 2022, 083C01 (2022)

  69. M. Albaladejo, P. Fernández-Soler, F.K. Guo, J. Nieves, Phys. Lett. B 767, 465–469 (2017). arXiv:1610.06727 [hep-ph]

    ADS  Google Scholar 

  70. M.L. Du, M. Albaladejo, P. Fernández-Soler, F.K. Guo, C. Hanhart, U.-G. Meißner, J. Nieves, D.L. Yao, Phys. Rev. D 98(9), 094018 (2018). arXiv:1712.07957 [hep-ph]

    ADS  Google Scholar 

  71. Z.Y. Wang, J.Y. Yi, Z.F. Sun, C.W. Xiao, Phys. Rev. D 105(1), 016025 (2022). arXiv:2109.00153 [hep-ph]

    ADS  Google Scholar 

  72. J.A. Oller, E. Oset, Phys. Rev. D 60, 074023 (1999). arXiv:hep-ph/9809337

    ADS  Google Scholar 

  73. D.L. Yao, L.Y. Dai, H.Q. Zheng, Z.Y. Zhou, Rep. Prog. Phys. 84(7), 076201 (2021). arXiv:2009.13495 [hep-ph]

    ADS  Google Scholar 

  74. H.A. Ahmed, C. Xiao, Phys. Rev. D 101(9), 094034 (2020). arXiv:2001.08141 [hep-ph]

    ADS  Google Scholar 

  75. T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. C 78, 025203 (2008). arXiv:0803.2550 [nucl-th]

    ADS  Google Scholar 

Download references

Acknowledgements

We thank Prof. Mei Huang for careful reading of the manuscript and useful comments, and acknowledge Profs. Eulogio Oset and Nikolay Achasov for helpful comments. This work is partly supported by the National Natural Science Foundation of China under Grant no. 12365019, the Natural Science Foundation of Changsha under Grants no. kq2208257 and the Natural Science Foundation of Hunan province under Grant no. 2023JJ30647.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. W. Xiao.

Additional information

Communicated by Eulogio Oset.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, H.A., Xiao, C.W. Study of \(\bar{B}^0_{(s)}\) decaying into \(D^0\) and \(\pi ^{+}\pi ^{-}\), \(K^{+}K^{-}\), or \(\pi ^{0}\eta \) with final state interactions. Eur. Phys. J. A 59, 245 (2023). https://doi.org/10.1140/epja/s10050-023-01146-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-01146-w

Navigation