Skip to main content
Log in

An Outline of the Theory of the Functioning of Aquatic Ecosystems: Nutrient Limitation

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

The process of eutrophication of water bodies, that is, the increase in the biological productivity of their ecosystems, has acquired such a large scale worldwide over the past few decades that today we are talking about lakes as “hot spots” of the carbon budget of the biosphere. Theoretical ideas about the mechanisms of functioning of aquatic ecosystems are needed to predict the emission of carbon dioxide from the surface of water bodies, as well as to assess their production and self-purification potential. However, the main provisions for theories on these issues have not been fully developed. In particular, the problem of nutrient limitation has not been solved. The phosphorus paradigm, which was dominant since the 1960s, underwent significant revision at the beginning of the 21st century, since the leading role of nitrogen in the control of the primary production process had been repeatedly shown. But there is no consensus on when an ecosystem is limited in nitrogen, when in phosphorus, or when co-limitation is observed. The article solves the question based on retrospective analysis of the state of production hydrobiology since the beginning of the 20th century, and studies performed over the last two decades on the nutrient limitation of aquatic ecosystems are analyzed. The broad ecological context of J. Liebig’s limiting factor principle and its biological meaning are also discussed. Most likely, each water body has a local set of conditions that ensures a change in the periods of nitrogen or phosphorus limitation of phytoplankton photosynthesis. Further studies of the problem of nutrient limitation should be aimed at elucidating the features of the interaction between algae and bacteria, in particular, the participation of bacteria in the nitrogen cycle and the destruction of organic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Abell, J.M., Ozkundakci, D., Hamilton, D.P., and Jones, J.R., Latitudinal variation in nutrient stoichiometry and chlorophyll–nutrient relationships in lakes: a global study, Fund. Appl. Limnol., 2012, vol. 181, no. 1, pp. 1–14.

    Article  CAS  Google Scholar 

  2. Alimov, A.F., Boulion, V.V., and Golubkov, S.M., Resource potential of species, communities and ecosystems of continental water bodies, Usp. Sovrem. Biol., 2009, vol. 129, no. 6, pp. 516–527.

    Google Scholar 

  3. Artari, A.P., K fiziologii i biologii khlamidomonad (To the Physiology and Biology of Chlamydomonas), Moscow: Tipografiya Russkogo Tovarishchestva, 1913.

  4. Baranov, I.V., Study of photosynthesis in the water bodies of the Silurian Plateau of the Leningrad Region, Vestn. Leningr. Gos. Univ., 1948, no. 7, pp. 58–68.

  5. Baranov, I.V., Osnovy bioproduktsionnoi gidrokhimii (Fundamentals of Bioproduction Hydrochemistry), Moscow: Legkaya i Pishchevaya Promyshlennost’, 1982.

  6. Berg, G.M., Balode, M., Purina, I., Bekere, S., et al., Plankton community composition in relation to availability and uptake of oxidized and reduced nitrogen, Aquat. Microb. Ecol., 2003, vol. 30, pp. 263–274.

    Article  Google Scholar 

  7. Bergstrom, A.-K. and Karlsson, J., Light and nutrient control phytoplankton biomass responses to global change in northern lakes, Global Change Biol., 2019, vol. 25, no. 6, pp. 2021–2029.

    Article  Google Scholar 

  8. Bergstrom, A.-K., Jonsson, A., and Jansson, M., Phytoplankton responses to nitrogen and phosphorus enrichment in unproductive Swedish lakes along a gradient of atmospheric nitrogen deposition, Aquat. Biol., 2008, vol. 4, pp. 55–64.

    Article  Google Scholar 

  9. Boulion, V.V., A new look at the paradigm of phosphorus control in limnology, Usp. Sovrem. Biol., 2016, vol. 136, no. 3, pp. 311–318.

    Google Scholar 

  10. Chorus, I. and Spijkerman, E., What Colin Reynolds could tell us about nutrient limitation, N:P ratios and eutrophication control, Hydrobiologia, 2021, vol. 848, pp. 95–111.

    Article  CAS  Google Scholar 

  11. Corzo, A., Morillo, J.A., and Rodriguez, S., Production of transparent exopolymer particles (TEP) in cultures of Chaetaceros calcitrans under nitrogen limitation, Aquat. Microb. Ecol., 2000, vol. 23, pp. 63–72.

    Article  Google Scholar 

  12. Covino, T.P., Bernhardt, E.S., and Heffernan, J.B., Measuring and interpreting relationships between nutrient supply, demand, and limitation, Freshwater Sci., 2018, vol. 37, no. 3, pp. 448–455.

    Article  Google Scholar 

  13. Datsenko, Yu.S., Evtrofirovanie vodokhranilishch. Gidrologo-gidrokhimicheskie aspekty (Eutrophication of Reservoirs. Hydrological and Hydrochemical Aspects), Moscow: GEOS, 2007.

  14. Deevey, E.S., Limnological studies in Connecticut. V. A contribution to regional limnology, Am. J. Sci., 1940, vol. 238, no. 10, pp. 717–741.

    Article  CAS  Google Scholar 

  15. Demars, B.O.L., Friberg, N., and Thornton, B., Pulse of dissolved organic matter alters reciprocal carbon subsidies between autotrophs and bacteria in stream food webs, Ecol. Monogr., 2020, vol. 90, no. 1, p. e01399.

    Article  Google Scholar 

  16. Dillon, P.J. and Rigler, F.H., The phosphorus–chlorophyll relationship in lakes, Limnol. Oceanogr., 1974, vol. 19, no. 5, pp. 767–773.

    Article  CAS  Google Scholar 

  17. Donald, D.B., Bogard, M.J., Finlay, K., and Leavitt, P.R., Comparative effects of urea, ammonium, and nitrate on phytoplankton abundance, community composition, and toxicity in hypereutrophic freshwaters, Limnol. Oceanogr., 2011, vol. 56, no. 6, pp. 2161–2175.

    Article  CAS  Google Scholar 

  18. Donald, D.B., Bogard, M.J., Finlay, K., et al., Phytoplankton-specific response to enrichment of phosphorus-rich surface waters with ammonium, nitrate, and urea, PLoS One, 2013, vol. 8, no. 1, p. e53277.

    Article  CAS  Google Scholar 

  19. Dong, J., Zhou, Q., Gao, Y., et al., Long-term effects of temperature and nutrient concentrations on the phytoplankton biomass in three lakes with differing trophic statuses on the Yungui Plateau, China, Ann. Limnol. - Int. J. Limnol., 2018, vol. 54, Art. 9.

    Article  Google Scholar 

  20. Donis, D., Mantzouki, E., McGinnis, D.F., et al., Stratification strength and light climate explain variation in chlorophyll a at the continental scale in a European multilake survey in a heatwave summer, Limnol. Oceanogr., 2021, vol. 66, no. 12, pp. 4314–4333.

    Article  CAS  Google Scholar 

  21. Dortch, Q., The interaction between ammonium and nitrate uptake in phytoplankton, Mar. Ecol.: Prog. Ser., 1990, vol. 61, pp. 183–201.

    Article  CAS  Google Scholar 

  22. Doyle, B.C., de Eyto, E., McCarthy, V., et al., Late summer peak in pCO2 corresponds with catchment export of DOC in a temperate, humic Lake, Inland Waters, 2021, vol. 11, no. 2, pp. 234–249.

    Article  CAS  Google Scholar 

  23. Erratt, K.J., Creed, I.F., and Trick, C.G., Comparative effects of ammonium, nitrate and urea on growth and photosynthetic efficiency of three bloom-forming cyanobacteria, Freshwater Biol., 2018, vol. 63, pp. 626–638.

    Article  CAS  Google Scholar 

  24. Ferber, L.R., Levine, S.N., Lini, A., and Livingston, G.P., Do cyanobacteria dominate in eutrophic lakes because they fix atmospheric nitrogen?, Freshwater Biol., 2004, vol. 49, pp. 690–708.

    Article  CAS  Google Scholar 

  25. Filiz, N., Iskin, U., Beklioglu, M., Oglu, B., et al., Phytoplankton community response to nutrients, temperatures, and a heat wave in shallow lakes: an experimental approach, Water, 2020, vol. 12, no. 12, p. 3394.

    Article  CAS  Google Scholar 

  26. Filstrup, C.T. and Downing, J.A., Relationship of chlorophyll to phosphorus and nitrogen in nutrient-rich lakes, Inland Waters, 2017, vol. 7, no. 4, pp. 385–400.

    Article  CAS  Google Scholar 

  27. Filstrup, C.T., Wagner, T., Oliver, S.K., et al., Evidence for regional nitrogen stress on chlorophyll a in lakes across large landscape and climate gradients, Limnol. Oceanogr., 2018, vol. 63, no. S1, pp. S324–S339.

    Article  CAS  Google Scholar 

  28. Gao, W., Chen, Y., Liu, Y., and Guo, H.-Ch., Scientometric analysis of phosphorus research in eutrophic lakes, Scientometrics, 2015, vol. 102, pp. 1951–1964.

    Article  CAS  Google Scholar 

  29. Gashkina, N.A., Zonal features of the distribution of nutrient elements and organic matter in small lakes, Water Resour., 2011, vol. 38, no. 3, pp. 352–371.

    Article  CAS  Google Scholar 

  30. Gashkina, N.A. and Moiseenko, T.I., Trophicity limitation in small lakes by main nutrients, Dokl. Earth Sc., 2010, vol. 435, no. 1, рр. 1539–1543.

    Article  CAS  Google Scholar 

  31. Glibert, P.M., Wilkerson, F.P., Dugdale, R.C., et al., Pluses and minuses of ammonium and nitrate uptake and assimilation by phytoplankton and implications for productivity and community composition, with emphasis on nitrogen-enriched conditions, Limnol. Oceanogr., 2016, vol. 61, no. 1, pp. 165–197.

    Article  Google Scholar 

  32. Guseva, K.A., Hydrobiological productivity and bloom forecasts, Mikrobiologiya, 1938, vol. 7, no. 3, pp. 303–315.

    Google Scholar 

  33. Gutel’makher, B.L., Metabolizm planktona kak edinogo tselogo: Trofometabolicheskie vzaimodeistviya zoo- i fitoplanktona (Metabolism of Plankton as a Whole: Trophometabolic Interactions of Zoo- and Phytoplankton), Leningrad: Nauka, 1986.

  34. Hanson, P.C., Bade, D.L., Carpenter, S.R., and Kratz, T.K., Lake metabolism: relationships with dissolved organic carbon and phosphorus, Limnol. Oceanogr., 2003, vol. 48, no. 3, pp. 1112–1119.

    Article  CAS  Google Scholar 

  35. Hayes, N.M., Vanni, M.J., Horgan, M.J., and Renwick, W.H., Climate and land use interactively affect lake phytoplankton nutrient limitation status, Ecology, 2015, vol. 96, no. 2, pp. 392–402.

    Article  Google Scholar 

  36. Hayes, N.M., Patoine, A., Haig, H.A., et al., Spatial and temporal variation in nitrogen fixation and its importance to phytoplankton in phosphorus-rich lakes, Freshwater Biol., 2019, vol. 64, pp. 269–283.

    Article  CAS  Google Scholar 

  37. Hennemann, M.C. and Petrucio, M.M., High chlorophyll a concentration in a low nutrient context: discussion in a subtropical lake dominated by Cyanobacteria, J. Limnol., 2016, vol. 75, no. 3, pp. 520–530.

    Google Scholar 

  38. Higgins, S.N., Paterson, M.J., Hecky, R.E., et al., Biological nitrogen fixation prevents the response of a eutrophic lake to reduced loading of nitrogen: evidence from a 46-year whole-lake experiment, Ecosystems, 2018, vol. 21, pp. 1088–1100.

    Article  CAS  Google Scholar 

  39. Holgerson, M.A., Hovel, R.A., Kelly, P.T., et al., Integrating ecosystem metabolism and consumer allochthony reveals nonlinear drivers in lake organic matter processing, Limnol. Oceanogr., 2022, vol. 67, no. S1, pp. S71–S85.

  40. Hutchinson, G.E., Limnological studies in Connecticut. IV. The mechanisms of intermediary metabolism in stratified lakes, Ecol. Monogr., 1941, vol. 11, no. 1, pp. 22–60.

    Article  Google Scholar 

  41. Hutchinson, G.E., Eutrophication, Am. Sci., 1973, vol. 61, pp. 269–279.

    CAS  Google Scholar 

  42. Isles, P.D.F., Creed, I.F., and Bergstrom, A.-K., Recent synchronous declines in DIN:TP in Swedish lakes, Global Biogeochem. Cycles, 2018, vol. 32, pp. 208–225.

    Article  CAS  Google Scholar 

  43. Isles, P.D.F., Jonsson, A., Creed, I.F., and Bergstrom, A.-K., Does browning affect the identity of limiting nutrients in lakes?, Aquat. Sci., 2020, vol. 82, no. 2, p. 45.

    Article  CAS  Google Scholar 

  44. Johnstone, J., Conditions of Life in the Sea, Cambridge Biological Series, 1908.

    Google Scholar 

  45. Joint, I., Henriksen, P., Fonnes, G.A., et al., Competition for inorganic nutrients between phytoplankton and bacterioplankton in nutrient manipulated mesocosms, Aquat. Microb. Ecol., 2002, vol. 29, pp. 145–159.

    Article  Google Scholar 

  46. Karpowicz, M., Zielinski, P., Grabowska, M., et al., Effect of eutrophication and humification on nutrient cycles and transfer efficiency of matter in freshwater food webs, Hydrobiologia, 2020, vol. 847, pp. 2521–2540.

    Article  CAS  Google Scholar 

  47. Kiselev, I.A., The latest achievements in the study of the productivity of water bodies. I. Factors determining plankton productivity, Priroda, 1941, no. 1, pp. 56–61.

  48. Kritzberg, E.S., Cole, J.J., Pace, M.M., and Graneli, W., Does autochthonous primary production drive variability in bacterial metabolism and growth efficiency in lakes dominated by terrestrial C inputs?, Aquat. Microb. Ecol., 2005, vol. 38, pp. 103–111.

    Article  Google Scholar 

  49. Lewis, W.M. and Wurtsbaugh, W.A., Control of lacustrine phytoplankton by nutrients: erosion of the phosphorus paradigm, Int. Rev. Hydrobiol., 2008, vol. 93, nos. 4–5, pp. 446–465.

    Article  CAS  Google Scholar 

  50. Liebig, J., Khimiya v prilozhenii k zemledeliyu i fiziologii (Chemistry in Its Application to Agriculture and Physiology), Moscow–Leningrad: OGIZ–Sel’khozgiz, 1936.

  51. Maucha, R., Upon the influence of temperature and intensity of light on the photosynthetic production of nannoplankton, Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie, 1924, vol. 2, pp. 381–401.

    Google Scholar 

  52. Maucha, R. and Unger, E., Theoretical considerations on the mutual connections between the hydrobios and E. Naumann’ milieu-spectra, Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie, 1924, vol. 2, pp. 402–414.

    Google Scholar 

  53. McCauley, E., Downing, J.A., and Watson, S., Sigmoid relationships between nutrients and chlorophyll among lakes, Can. J. Fish. Aquat. Sci., 1989, vol. 46, pp. 1171–1175.

    Article  CAS  Google Scholar 

  54. Mikheyeva, T.M., Suktsessiya vidov v fitoplanktone: opredelyayushchie factory (Species Succession in Phytoplankton: Determinants), Minsk: Beloruss. Gos. Univ. im. V.I. Lenina, 1983.

  55. Mindl, B., Sonntag, B., Pernthaler, J., et al., Effect of phosphorus loading on interactions of algae and bacteria: Reinvestigation of the “phytoplankton–bacteria paradox” in a continuous cultivation system, Aquat. Microb. Ecol., 2005, vol. 38, pp. 203–213.

    Article  Google Scholar 

  56. Moss, B., Jeppesen, E., Sondergaard, M., et al., Nitrogen, macrophytes, shallow lakes and nutrient limitation: resolution of a current controversy?, Hydrobiologia, 2013, vol. 710, pp. 3–21.

    Article  CAS  Google Scholar 

  57. Naumann, E., Purpose and main problems of regional limnology, Tr. Kosinskoi Biologicheskoi Stantsii Moskovskogo Obshchestva Ispytatelei Prirody, 1927, no. 6, pp. 3–11.

  58. Nikol’skii, A.A., Velikie idei velikikh ekologov: istoriya klyuchevykh kontseptsii v ekologii (Great Ideas of Great Ecologists: The History of Key Concepts in Ecology), Moscow: GEOS, 2014.

  59. Odum, E.P., Basic Ecology, New York: CBS College Publishing, 1983.

    Google Scholar 

  60. Ozerov, S.A., On the question of the chemical determination of the productivity of lakes, Tr. Nauchnogo Instituta Rybnogo Khozyaistva, 1924, vol. 1, pp. 365–396.

    Google Scholar 

  61. Ozkan, K., Jeppesen, E., Sondergaard, M., et al., Contrasting roles of water chemistry, lake morphology, land-use, climate and spatial processes in driving phytoplankton richness in the Danish landscape, Hydrobiologia, 2013, vol. 710, pp. 173–187.

    Article  Google Scholar 

  62. Patoine, A. and Leavitt, P.R., Landscape analysis of the role of N2 fixation in satisfying algal demand for nitrogen in eutrophic lakes, Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie, 2008, vol. 30, pp. 366–370.

    CAS  Google Scholar 

  63. Phillips, G., Pietilainen, O.-P., Carvalho, L., et al., Chlorophyll–nutrient relationships of different lake types using a large European dataset, Aquat. Ecol., 2008, vol. 42, pp. 213–226.

    Article  CAS  Google Scholar 

  64. Popov, A.I., Guminovye veshchestva: svoistva, stroenie, obrazovanie (Humic Substances: Properties, Structure, Formation) Ermakov, E.I., Ed., St. Petersburg: S.-Peterb. Gos. Univ., 2004.

  65. Prairie, Y.T., Duarte, C.M., and Kalff, J., Unifying nutrient– chlorophyll relationships in lakes, Can. J. Fish. Aquat. Sci., 1989, vol. 46, pp. 1176–1182.

    Article  CAS  Google Scholar 

  66. Prairie, Y.T., Bird, D.F., and Cole, J.J., The summer metabolic balance in the epilimnion of southeastern Quebec lakes, Limnol. Oceanogr., 2002, vol. 47, no. 1, pp. 316–321.

    Article  CAS  Google Scholar 

  67. Quinlan, R., Filazzola, A., Mahdiyan, O., et al., Relatioships of total phosphorus and chlorophyll in lakes worldwide, Limnol. Oceanogr., 2021, vol. 66, no. 2, pp. 392–404.

    Article  CAS  Google Scholar 

  68. Reay, D.S., Nedwell, D.B., Priddle, J., and Ellis-Evans, J.C., Temperature dependence of inorganic nitrogen uptake: reduced affinity for nitrate at suboptimal temperatures in both algae and bacteria, Appl. Environ. Microbiol., 1999, vol. 65, no. 6, pp. 2577–2584.

    Article  CAS  Google Scholar 

  69. Rizhinashvili, A.L. and Maksimova, O.B., Evaluation of Primary Production Provision in Small Lake and its Trophic State, Hydrobiological Journal, 2018a, vol. 54, no. 2, pp. 31–40.

    Article  Google Scholar 

  70. Rizhinashvili, A.L. and Maksimova, O.B., Is nitrate a driver for pigments of phytoplankton (A case study from a small shallow European lake)?, Ann. Limnol.–Int. J. Limnol., 2018, vol. 54, Art. 38.

    Article  Google Scholar 

  71. Rylov, W., Einige Bemerkungen betreffs des regionallimnologischen Studiums, Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie, 1929, vol. 4, pp. 538–548.

    Google Scholar 

  72. Scott, J.T., McCarthy, M.J., and Paerl, H.W., Nitrogen transformations differentially affect nutrient-limited primary production in lakes of varying trophic state, Limnol. Oceanogr. Lett., 2019, vol. 4, no. 4, pp. 96–104.

    Article  CAS  Google Scholar 

  73. Shelford, V.E., Animal communities in temperate America, in The Geographic Society of Chicago. Bulletin. No. 5 (Pt 1), Chicago: The Univ. Chicago Press, 1913.

    Google Scholar 

  74. Shuvo, A., O’Reilly, C.M., Blagrave, K., et al., Total phosphorus and climate are equally important predictors of water quality in lakes, Aquat. Sci., 2021, vol. 83, no. 1, p. 16.

    Article  CAS  Google Scholar 

  75. Somov, M.P., Fundamentals of fish-breeding taxation of lakes, Izvestiya Otdela Prikladnoi Ikhtiologii i Nauchno-Promyslovykh Issledovanii, 1920, vol. 1, no. 2, pp. 131–336.

    Google Scholar 

  76. Stetler, J.T., Knoll, L.B., Driscoll, Ch.T., and Rose, K.C., Lake browning generates a spatiotemporal mismatch between dissolved organic carbon and limiting nutrients, Limnol. Oceanogr. Lett., 2021, vol. 6, no. 4, pp. 182–191.

    Article  CAS  Google Scholar 

  77. Transformatsiya organicheskogo i biogennykh veshchestv pri antropogennom evtrofirovanii ozer (Transformation of Organic and Nutrient Substances during Anthropogenic Eutrophication of Lakes), Drabkova, V.G. and Stravinskaya, E.A., Eds., Leningrad: Nauka, 1989.

  78. Van Gerven, L.P.A., Kuiper, J.J. Mooij, W.M., et al., Nitrogen fixation does not axiomatically lead to phosphorus limitation in aquatic ecosystems, Oikos, 2019, vol. 128, pp. 563–570.

    Article  CAS  Google Scholar 

  79. Vanni, M.J., Renwick, W.H., Bowling, A.M., et al., Nutrient stoichiometry of linked catchment-lake systems along a gradient of land use, Freshwater Biol., 2011, vol. 56, pp. 791–811.

    Article  CAS  Google Scholar 

  80. Vinberg, G.G., Primary production of plankton, Zh. Obshch. Biol., 1956, vol. 17, no. 5, pp. 364–376.

    Google Scholar 

  81. Vinberg, G.G., Pervichnaya produktsiya vodoemov (Primary Production of water bodies), Minsk: Akad. Nauk BSSR, 1960.

  82. Vinberg, G.G. and Lyakhnovich, V.P., Udobrenie prudov (Pond Fertilization), Moscow: Pishchevaya promyshlennost’, 1965.

  83. Wang, J., Wagner, N.D., Fulton, J.M., and Scott, J.T., Diazotrophs modulate phycobiliproteins and nitrogen stoichiometry differently than other cyanobacteria in response to light and nitrogen availability, Limnol. Oceanogr., 2021, vol. 66, no. 6, pp. 2333–2345.

    Article  CAS  Google Scholar 

  84. Ward, N.K., Steele, B.G., Weathers, K.C., et al., Differential responses of maximum versus median chlorophyll-a to air temperature and nutrient loads in an oligotrophic lake over 31 years, Water Res. Research, 2020, vol. 56, p. e2020WR027296.

  85. Weiss, M. and Simon, M., Consumption of labile dissolved organic matter by limnetic bacterioplankton: the relative significance of amino acids and carbohydrates, Aquat. Microb. Ecol., 1999, vol. 17, pp. 1–12.

    Article  Google Scholar 

  86. Zagarese, H.E., De los Angeles Gonzalez Sagrario, M., Wolf-Gladrow, D., et al., Patterns of CO2 concentration and inorganic carbon limitation of phytoplankton biomass in agriculturally eutrophic lakes, Water Res., 2021, vol. 190, p. 116715.

    Article  CAS  Google Scholar 

  87. Zhou, J., Han, X., Brookes, J.D., and Qin, B., High probability of nitrogen and phosphorus co-limitation occurring in eutrophic lakes, Environ. Pollut., 2022, vol. 292, pt. A, p. 118276.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Rizhinashvili.

Ethics declarations

The author declares no conflict of interest.

This article does not contain any research involving humans and animals as research objects.

Additional information

Translated by M. Shulskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rizhinashvili, A.L. An Outline of the Theory of the Functioning of Aquatic Ecosystems: Nutrient Limitation. Biol Bull Rev 12, 596–608 (2022). https://doi.org/10.1134/S2079086422060068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086422060068

Keywords:

Navigation