Skip to main content

Effects of Eutrophication

  • Chapter
  • First Online:
Eutrophication: Causes, Consequences and Control

Abstract

Eutrophication as one of the importunate environmental hazards in the aquatic ecosystems causes pronounced deterioration of the water quality and represents serious threat to the biotic components of this ecosystem. The main environmental effects of eutrophication are increase of suspended particles owing to extensive macroalgal blooms, decrease of water clarity, and increase in the rate of precipitation that led to the destruction of benthic habitat by shading of submerged vegetation. In addition, other important effects are also known such as the bottom-water hypoxia, production of CO2 associating the decomposition of intensive produced organic matter which enhances water acidification, and altering biogeochemical processes, including sediment anoxia, accumulation of deleterious hydrogen sulfide, and nutrient cycling. Shift in the phytoplankton community was frequently reported in numerous eutrophic coastal waters owing to the variable nutrient requirement of different phytoplankton groups and the ratios between the different nutrients in these waters. Eutrophication is often accompanied by algal blooms which are frequently harmful and cause various injuries to the aquatic animals, such as clogging of fish gills, poisoning by toxins secretion, and localized anoxia, which consequently lead to detrimental effect on the fishing resources and the national economy through mass mortality of variable aquatic animals. The hypoxia conditions in bottom waters cause escape of sensitive demersal and other benthic fishes, mortality of bivalves, echinoderms and crustaceans, and extreme loss of benthic diversity, which led to changes in the diet of bottom-feeding fishes as well as shift in dominance among demersal fish species. Increase of algal growth/organic production rates led to changes in the benthic community structure, such as replacement of hermatypic corals with coralline algae, filamentous algae, macroalgae, and/or a variety of filter feeders and increase of bioerosion in some forms. Trophic linkages between pelagic and benthic communities are affected by eutrophication in the coastal waters, where the feeding habit of higher consumers such as benthic fish changes to derive high percentage of their energy from pelagic primary production sources. Shellfishes as an intermediate link between the water column and demersal fish could also be affected by eutrophication and will impact (as prey) on the demersal fish production. Meanwhile, increasing turbidity with eutrophication led to a shift in fish species owing to change of feeding on zooplankton to benthic organisms. Severe shading and light attenuation caused by blooms of both macroalgae and phytoplankton in eutrophic conditions hinder the photosynthetic processes in benthic plants and has led to the decline of seagrass habitats. High nutrient levels may lead to disturbance in nitrogen and phosphorus metabolism in seagrass and consequently cause a change in plant communities. Coral reefs are affected by eutrophication in different aspects. The organic compounds released from algal blooms promote microbial activity on coral surfaces and cause coral mortality, while synergistic effect of both the dissolved organic matter and rates of bioerosion has a pronounced role in reef degradation. Harmful algal blooms caused a complete loss of the branching corals, and substantial reductions in the abundance, richness, and trophic diversity of the associated coral reef fish communities. Eutrophication and siltation have severely stressed many fringing and offshore reefs that prefer to grow in nutrient-poor waters, and cause physiological changes in growth and skeletal strength, decrease of reproductive effort, and a reduced ability to withstand disease. In many marine eutrophic habitats, zooplankton community experienced a decline in species richness and abundance, change in structure, size, reproduction rate, and feeding habits. Size change in zooplankton occurs owing to the replacement of small species by another relatively large species of the same group, while the structure may change because of the trophic relationship of zooplankton with their prey (primary producers) and predators (fishes). Although benthic foraminiferans have been widely used as indicators of eutrophication in coastal marine ecosystems, low species diversity and high population densities of several benthic foraminiferans were reported in eutrophic area. On the other hand, smaller opportunistic benthic foraminiferal species dominate in the coral reef ecosystems and lead to a decline of larger endosymbiont-bearing taxa, while the hypoxia-tolerant foraminiferan species increased in abundance against the disappearance of the more sensitive species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ambio (1990) Special Issue. Marine eutrophication. Ambio 19:102–176

    Google Scholar 

  • Andrén E (1999) Changes in the composition of the diatom flora during the last century indicate increased eutrophication of the older estuary, south-western Baltic Sea. Est Coast Shelf Sci 48:665–676

    Google Scholar 

  • Anderson DM, Glibert PM, Burkholder JM et al. (2002) Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries 25:704–726

    Google Scholar 

  • Andersson L, Rydberg L (1993) Exchange of water and nutrients between the Skagerrak and the Kattegat. Estuar Coast Shelf Sci 36:159–181

    CAS  Google Scholar 

  • Anderson CR, Brzenzinski MA, Washburn L, Kudela R et al. (2006) Circulation and environmental conditions during a toxigenic Pseudo-nitzschia australis bloom in the Santa Barbara Channel, California. Mar Ecol Prog Ser 327:119–133

    CAS  Google Scholar 

  • Anderson DM, Burkholder JM, Cochlan WP, Glibert PM, Gobler CJ, Heil CA, Kudela R, Parsons ML, Rensel JEJ, Townsend DW, Trainer VL, Vargo GA et al. (2008) Harmful algal blooms and eutrophication: examining linkages from selected coastal regions of the United States. Harmful Algae 8:39–53

    CAS  Google Scholar 

  • Anon (1993) North Sea-Sub-region 8. Assessment Report 1993. North Sea Task Force. State Pollution Control Authority (SFT), Norway, pp 79

    Google Scholar 

  • Araújo MA, Pinto-Coelho RM (1998) Producao e consumo carbono organico na comunidade planctonica da represa da Pampulha, Belo Horizonte. MG Rev. Bress Biol 58:403–414

    Google Scholar 

  • Baden SP, Loo LO, Pihl L, Rosenberg R et al. (1990) Effects of eutrophication on benthic communities including fish: Swedish west coast. Ambio 19:113–122

    Google Scholar 

  • Bandy OL, Ingle JC Jr, Resig JM et al. (1965) Foraminiferal trends, Hyperion outfall, California. Limnol Oceanogr 10:314–332

    Google Scholar 

  • Barmawidjaja DM, Van Der Zwaan GJ, Jorissen FJ, Puskaric S et al. (1995) 150 years of eutrophication in the northern Adriatic Sea: evidence from a benthic foraminiferal record. Marine Geolog 122:367–384

    Google Scholar 

  • Bauman AG, Burt JA, Feary DA, Marquis E, Usseglio P et al. (2010) Tropical harmful algal blooms: an emerging threat to coral reef communities? Mar Poll Bull 60:2117–2122

    CAS  Google Scholar 

  • Bell PRF, Elmetri I (1995) Ecological indicators of large scale eutrophication in the Great Barrier Reef (GBR) Lagoon. Arnbio 24:208–215

    Google Scholar 

  • Bell PRF, Tomascik T (1993) The demise of the fringing coral reefs of Barbados and of regions in the Great Barrier Reef (GBR) lagoon—impacts of eutrophication. Proceedings of the colloquium on global aspects of coral reefs, Miami. pp 319–325

    Google Scholar 

  • Bell PRF, Lapointe BR, Elmetri I et al. (2007) Re-evaluation of ENCORE: support for the eutrophication threshold model for coral reefs. Ambio 36:416–424

    CAS  Google Scholar 

  • Birkeland C (1977) The importance of rate of biomass accumulation in early successional stages of benthic communities to the survival of coral recruits. In: Taylor DL (ed) Proceedings of Third International Coral Reef Symposium Vol 1: Biology. Rosenstiel School of Marine and Atmospheric Science, Miami, pp 15–21

    Google Scholar 

  • Birkeland C (1988) Second order ecological effects of nutrient input into coral communities. Galaxea 7:91–100

    Google Scholar 

  • Björk M, Mohammed SM, Biorklund M, Semesi A et al. (1995) Corraline algae important coral-reef builders threatened by pollution. Ambio 24:502–505

    Google Scholar 

  • Boechat IG (2000) Modificações na composição bioquímica do seston no reservatório da Pampulha, MG, ao longo de ciclos nictemerais, com ênfase na comunidade fitoplanctônica. Dissertação de Mestrado, Universidade Federal de Minas Gerais, Belo Horizonte, pp 96

    Google Scholar 

  • Boesch DF, Rabalais NN (1991) Effects of hypoxia on continental shelf benthos: comparisons between the New York Bight and the Northern Gulf of Mexico. GSL.SP.1991.058.01.02 Geological Society, London. Special Publications 58:27–34

    Google Scholar 

  • Bonsdorff E (1992) Drifting algae and zoobenthos—effects on settling and community structure. Netherlands J Sea Res 30:57–62

    Google Scholar 

  • Borum J (1996) Shallow water and land/sea boundries. In: Jørgensen BB, Richardson K (eds) Eutrophication in a coastal marine environment. Coast Estuar Stud 52:179–203

    Google Scholar 

  • Boström C, Bonsdorff E, Kangas P, Norkko A et al. (2002) long-term changes of a brackish-water eelgrass (Zostera marina L.) community indicate effects of coastal eutrophication. Estuar Coast Shelf Sci 55:795–804

    Google Scholar 

  • Brand LE, Compton A (2007) Long-term increase in Karenia brevis abundance along the Southwest Florida Coast. Harmful Algae 6:232–252

    Google Scholar 

  • Breitburg DL, Sanders JG, Gilmour CC (1999) Variability in responses to nutrients and trace elements, and transmission of stressor effects through an estuarine food web. Limnol Oceanogr Methods 44(3, part 2):837–863

    CAS  Google Scholar 

  • Bricker SB, Clement CG, Pirhall DE, Orlando SP, Farrow DRG (1999) National estuarine eutrophication assessment: effects of nutrient enrichment in the nation’s estuaries. NOAA, National Ocean Service, Special Projects Office and the National Centers for Coastal Ocean Science. Silver Spring, pp 71

    Google Scholar 

  • Brock RE, Smith SV (1983) Response of coral reef cryptofauna communities to food and space. Coral Reefs 1:179–183

    Google Scholar 

  • Brodie JE (1997) Nutrients in the Great Barrier Reef region. In: Cosser P (ed) Nutrients in marine and estuarine environments. State of the Environment technical paper series (Estuaries and the Sea). Environment Australia, Canberra, pp 7–28

    Google Scholar 

  • Brodie J, Mitchell A (2006) Sediments and nutrients in north Queensland tropical streams: changes with agricultural development and pristine condition status. CRC Reef Research Centre Technical Report No. 62, CRC Reef Research Centre, Townsville, p 140

    Google Scholar 

  • Brown BE (1997) Coral bleaching: causes and consequences. Coral Reefs 16:129–138

    Google Scholar 

  • Buskey EJ, Liu H, Collumb C, Bersano JGF et al. (2001) The decline and recovery of a persistent Texas brown tide algal bloom in the Laguna Madre (Texas, USA). Estuaries 24:337–346

    Google Scholar 

  • Caperon J, Cattell S, Krasnick G et al. (1971) Phytoplankton kinetics in a subtropical estuary: eutrophication. Limnol Oceanogr 16:599–607

    Google Scholar 

  • Cardoso PG, Pardal MA, Lillebø AI, Ferreira SM, Raffaelli D, Marques JC et al. (2004) Dynamic changes in seagrass assemblages under eutrophication and implications for recovery. J Exper Mar Biol Ecol 302:233–248

    Google Scholar 

  • CEC (1991) Council Directive of 21 May 1991 concerning urban waste water treatment (91/271/EEC). Offic Jour Europ Commun 135:40–52

    Google Scholar 

  • Chandra S, Zanden MJV, Heyvaert AC, Richards BC, Allen BC, Goldman CR et al. (2005) The effect of cultural eutrophication on the coupling between primary producers and benthic consumers. Limnol Oceanogr 50:1368–1376

    CAS  Google Scholar 

  • Chauvaud L, Jean F, Ragueneau O, Thouzeau G et al. (2000) Long-term variation of the Bay of Brest ecosystem: benthic–pelagic coupling revisited. Mar Ecol Prog Ser 200:35–48

    CAS  Google Scholar 

  • Chorus I, Bartram J (1999) Toxic Cyanobacteria in Water: a Guide to Public Health Significance, Monitoring and Management. Für WHO durch E & FN Spon/Chapman & Hall, London, pp 416

    Google Scholar 

  • Cloern JE (2001) Our evolving conceptual model of the coastal eutrophication problem. Mar Ecol Prog Ser 210:223–253

    CAS  Google Scholar 

  • Codd GA, Beattie KA, Raggett SL et al. (1997) The evaluation of envirogard microcystin plate and tube kits. Environ. Agency, p 47

    Google Scholar 

  • Conley DJ, Schelske CL, Stoermer EF et al. (1993) Modification of silica biogeochemistry with eutrophication in aquatic systems. Mar Ecol Prog Ser 101:179–192

    CAS  Google Scholar 

  • Cooper SR (1995) Chesapeake Bay watershed historical land use: impact on water quality and diatom communities. Ecol Appl 5:703–723

    Google Scholar 

  • Cooper TF, Uthicke S, Humphrey C, Fabricius KE et al. (2007) Gradients in water column nutrients, sediment parameters, irradiance and coral reef development in the Whitsunday region, central Great Barrier Reef. Estuar Coast Shelf Sci 74:458–470

    Google Scholar 

  • Cox EF, Ribes M, Kinzie RA et al. (2006) Temporal and spatial scaling of planktonic responses to nutrient inputs into a subtropical embayment. Mar Ecol Prog Ser 324:19–35

    CAS  Google Scholar 

  • Crosbie ND, Furnas MJ (2001) Abundance distribution and flow-cytometric characterization of picophytoprokaryote populations in central (17 degrees S) and southern (20 degrees S) shelf waters of the great barrier reef. J Plankton Res 23:809–828

    Google Scholar 

  • Daro MH, Breton E, Antajan E, Gasparini S, Rousseau V et al. (2006) Do phaeocystis colony blooms affect zooplankton in the Belgian coastal zone? In: Rousseau V et al. (eds) Current status of eutrophication in the Belgian coastal zone. pp 61–72

    Google Scholar 

  • Delesalle B, Pichon M, Frankignoulle M, Gattuso JP et al. (1993) Effects of a cyclone on coral reef phytoplankton biomass, primary production and composition (Moorea Island French Polynesia). J Plankton Res 15:1413–1423

    Google Scholar 

  • Desprez M, Rybarczyk H, Wilson JG, Ducrotoy JP, Sueur F, Olivesi R, Elkaim B et al. (1992) Biological impact of eutrophication in the bay of Somme and the induction and impact of anoxia Nether J Sea Res 30:149–159

    Google Scholar 

  • DeVantier L, De’ath G, Turak E, Done T, Fabricius K et al. (2006) Species richness and community structure of reef-building corals on the nearshore Great Barrier Reef. Coral Reefs 25:329–340

    Google Scholar 

  • Diaz RJ, Rosenberg R (1995) Marine Benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanogr Marin Biol 33:245

    Google Scholar 

  • Done TJ (1992) Phase shifts in coral reef communities and their ecological significance. Hydrobiologia 247:121–132

    Google Scholar 

  • Dorgham (2011) Eutrophication problem in Egypt. In:Ansari AA, Gill SS, Lanza GR, Rast W (eds) Eutrophication: causes, consequences and control. Springer, The Netherlands, pp 171–194

    Google Scholar 

  • Dorgham MM, Abdel-Aziz NE, El-Deeb KZ, Okbah MA et al. (2004) Eutrophication problem in the Western Harbour of Alexandria, Egypt. Oceanologia 46:1–20

    Google Scholar 

  • Dortch Q, Whitledge TE (1992) Does nitrogen or silicon limit phytoplankton production in the Mississippi River plume and nearby regions? Cont Shelf Res 12:1293–1309

    Google Scholar 

  • EEA (1999) Nutrients in European ecosystems. European Environment Agency. Environmental assessment report 4, Copenhagen, Denmark, p 155

    Google Scholar 

  • EEA (2001) Eutrophication in Europe’s coastal waters. European Environment Agency Topic report Number 7, p 86, Copenhagen, Denmark

    Google Scholar 

  • European Communities (2002) Eutrophication and health. World Health Organization regional Office for Europe. Luxembourg Office for Official Publications of the European Communities, 40, ISBN 92-894-4413-4 (server (http://europa.eu.int)

    Google Scholar 

  • Fabricius KE (2005) Effects of terrestrial runoff on the ecology of corals and coral reefs: Review and synthesis. Mar Pollut Bull 50:125–146

    CAS  Google Scholar 

  • Fabricius KE (2007) Conceptual model of the effects of terrestrial runoff on the ecology of corals and coral reefs of the GBR. Report to the Australian Government’s Marine and Tropical Sciences Research Facility (MTSRF), p 24

    Google Scholar 

  • Fabricius KE, Okaji K, De’ath G et al. (2010) Three lines of evidence to link outbreaks of the crown-of-thornsseastar Acanthaster planci to the release of larval food limitation. Coral Reefs 29:593–605

    Google Scholar 

  • Flemer D, Mackiernan G, Nehlsen W, Tippie V et al. (1983) Chesapeake Bay: A profile of environmental change. US Environmental Protection Agency. Chesapeake Bay Program Office, Annapolis, Maryland, pp 200

    Google Scholar 

  • Foden J, Devlin MJ, Mills DK, Malcolm SJ et al. (2011) Searching for undesirable disturbance: an application of the OSPAR eutrophication assessment method to marine waters of England and Wales. Biogeochemistry 106(2):157–175

    CAS  Google Scholar 

  • Furnas MA, Mitchell M, Skuza M, J B (2005) In the other 90 %: phytoplankton responses to enhanced nutrient availability in the Great Barrier Reef Lagoon. Mar Pollut Bull 51:253–265

    CAS  Google Scholar 

  • Gin KYH, Lin X, Zhang S et al. (2000) Dynamics and size structure of phytoplankton in the coastal waters of Singapore. J Plankt Res 22:1465–1484

    CAS  Google Scholar 

  • Glibert PM, HeiL CA, Hollander D, Revilla M, Hoare A, Alexander J, Murasko S et al. (2004) Evidence for dissolved organic nitrogen and phosphorus uptake during a cyanobacterial bloom in Florida Bay. Marin Ecol Progr Ser 280:73–83

    Google Scholar 

  • Gobler CJ, Lonsdale DJ, Boyer GL et al. (2005) A synthesis and review of causes and impact of harmful brown tide blooms caused by the alga, Aureococcus anophagefferens. Estuaries 28:726–749

    Google Scholar 

  • Graneli E, Risinger L (1995) Was the Chrysochromulina polylepis bloom in 1988 caused by a release of cobalt or vitamin B12 from a previous bloom of Skeletonema costatum? Harmful algal blooms. In: Proceedings of the 6th International Conference on Toxic Marine Phytoplankton, Lavoisier, Nantes, France, pp 223–229

    Google Scholar 

  • Graneli E, Turner JT (2008) Ecology of harmful algae. Springer-Verlag, Berlin

    Google Scholar 

  • Gray JS (1992) Eutrophication in the sea. In: Colombo G, Ferrari I, Ceccherelli VU, Rossi R (eds) Marine eutrophication and population dynamics. Proc 25th Eur Mar Biol Symp. Olsen & Olsen, Fredensborg, pp 3–15

    Google Scholar 

  • Guzman HM, Cortes J, Glynn PW, Richmond RH et al. (1990) Coral mortality associated with dinoflagellate blooms in the eastern pacific Costa Rica and Panama. Marin Ecol Progr Ser 60:299–304

    Google Scholar 

  • Hallegraeff GM (1993) A review of harmful algal blooms and their apparent global increase. Phycologia 32:79–99

    Google Scholar 

  • Hallock P, Lidz BH, Cockey-Burkhard EM, Donnelly KB et al. (2003) Foraminifera as bioindicators in coral reef assessment and monitoring: the Foram index. Environ Monit Assess 81:221–238

    Google Scholar 

  • Hansen BW, Hygum BH, Brozek M et al. (2000) Food web interactions in a Calanus finmarchicus dominated pelagic ecosystem. J Plankton Res 22:569–588

    Google Scholar 

  • Hart RC, Wragg PD (2009) Recent blooms of the dinoflagellate Ceratium in Albert Falls Dam (KZN): history, causes, spatial features and impacts on a reservoir ecosystem and its zooplankton. Water SA Online 35:455–468

    CAS  Google Scholar 

  • Hayward RS, Margraf FJ (1987) Eutrophication effects on prey size and food available to Yellow Perch in Lake Erie. Transact Americ Fish Soc 116:210–223

    Google Scholar 

  • Heck JRKL, Valentine JF (2007) The primacy of top-down effects in shallow benthic ecosystems. Estu Coasts 30:371–381

    Google Scholar 

  • Herman PMJ, Hemminga MA, Nienhuis PH, Verschuure JM, Wessel EGJ et al. (1996) Wax and wane of eelgrass Zostera marina and water column silica levels. Mar Ecol Prog Ser 144:303–307

    Google Scholar 

  • Heckjr KL, Valentine JF (2007) The primacy of top-down effects in shallow benthic ecosystems. Estu Coasts 30(3): 371–381

    Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME et al. (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    CAS  Google Scholar 

  • Hsieh CH, Sakai Y, Ban S, Ishikawa K, Ishikawa T, Ichise S, Yamamura N, Kumagai M et al. (2011) Eutrophication and warming effects on long-term variation of zooplankton in Lake Biwa. Biogeosciences 8:1383–1399

    CAS  Google Scholar 

  • Hulot FD, Lacroix G, Lescher-Moutoue F, Loreau M et al. (2000) Functional diversity governs ecosystem response to nutrient enrichment. Nature 405:340–344

    CAS  Google Scholar 

  • Hutchings PA, Peyrot-Clausade M, Osnorno A et al. (2005) Influence of land runoff on rates and agents of bioerosion of coral substrates. Mar Pollut Bull 51:438–447

    CAS  Google Scholar 

  • Hylland K, Sköld M, Gunnarsson JS, Skei J et al. (1996) Interactions between eutrophication and contaminants. IV. Effects on sediment-dwelling organisms. Mar Poll Bull 33:90–99

    CAS  Google Scholar 

  • Ignatiades L, Gotsis-Skretas O (2010) A Review on toxic and harmful algae in greek coastal waters (E. Mediterranean Sea). Toxins 2:1019–1037

    CAS  Google Scholar 

  • Imai I, Yamaguchi M, Hori Y et al. (2006) Eutrophication and occurrences of harmful algal blooms in the Seto Inland Sea, Japan. Plankton Bentos Res 1:71–84

    Google Scholar 

  • Isaksson I, Pihl L, Van Montfrans J et al. (1994) Eutrophication-related changes in macrovegetation and foraging of young cod (Gadus morhua L.): a mesocosm experiment. J Exp Mar Biol Ecol 177:203–217

    Google Scholar 

  • Ismael AA (2003) Succession of heterotrophic and mixotrophic dinoflagellates as well as autotrophic microplankton in the harbour of Alexandria, Egypt. J Plank Res 25:193–202

    Google Scholar 

  • Ismael AA, Dorgham MM (2003) Ecological indices as a tool for assessing pollution in El-Dekhaila Harbour (Alexandria, Egypt). Oceanologia 45:121–131

    Google Scholar 

  • Jacquet S, Delesalle B, Torréton J-P, Blanchot J et al. (2006) Response of phytoplankton communities to increased anthropogenic influences (southwestern lagoon, New Caledonia). Mar Ecol Prog Ser 320:65–78

    CAS  Google Scholar 

  • Josefson AB, Rasmussen B (2000) Nutrient retention by benthic macrofaunal biomass of Danish estuaries: importance of nutrient load and residence time. Estuarine Coast Shelf Sci 50:205–216

    CAS  Google Scholar 

  • Karabin A, Golanta E, Rozwita K et al. (1997) Eutrophication processes in a shallow, macrophyte dominated lake—factors influencing zooplankton structure and density in Lake Łuknajno (Poland). Hydrobiologia 342–343:401–409

    Google Scholar 

  • Karin K, Rutger R, Erik B et al. (2002) Temporal and spatial large-scale effects of eutrophication and oxygen deficiency on benthic fauna in Scandinavian and Baltic waters—a review. Oceanogr Marin Biol: An Annual Review 40: 427–489

    Google Scholar 

  • Kemp WM, Boynton WR, Adolf JE, Boesch DF, Boicourt WC, Brush G, Cornwell JCR, Fisher T, Glibert PM, Hagy JD, Harding LW, Houde ED, Kimmel DG, Miller WD, Newell RIE, Roman MR, Smith EM, Stevenson JC et al. (2005) Eutrophication of Chesapeake Bay: historical trends and ecological interactions. Mar Ecol Prog Ser 303:1–29

    Google Scholar 

  • Kennish MJ (ed) (2007). Eutrophication of estuarine and shallow coastal marine systems. Ecol Appl 17(5) Supplement. p 196. (Assessment of eutrophication of the Barnegat Bay-Little Egg Harbor Estuary and other Estuaries)

    Google Scholar 

  • Kennish MJ, Haag SM, Sakowicz GP et al. (2007) Demographic investigation of SAV in the Barnegat Bay-Little Egg Harbor Estuary with assessment of potential impacts of benthic macroalgae and brown tides. Technical Report, Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, New Jersey, pp 366

    Google Scholar 

  • Kennish MJ, Haag SM, Sakowicz GP et al. (2008) Seagrass demographic and spatial habitat characterization in Little Egg Harbor, New Jersey, using fixed transects. J Coast Res 55:148–170

    Google Scholar 

  • Kennish MJ (2009) Eutrophication of Mid-Atlantic coastal bays. Bullet New Jersey Acad Sci 55:5–12

    Google Scholar 

  • Kilham SS, Kreeger DA, Goulden CE, Lynn SG et al. (1997) Effect of algal food quality on fecundity and population growth rates of Daphnia. Freshwat Biol 38:639–647

    Google Scholar 

  • Kim D, Oda T, Muramatsu T, Kim D, Matsuyama Y, Honjo T et al. (2002) Possible factors responsible for the toxicity of Cochlodinium polykrikoides, a red tide phytoplankton. Toxicol Pharmacol 132:415–423

    Google Scholar 

  • Kinsey D, Davies PJ (1979) Effect of elevated nitrogen and phosphorus on coral reef growth. Limnol Oceanogr 24:935–940

    CAS  Google Scholar 

  • Kirby M, Miller H (2005) Response of a benthic suspension feeder (Crassostrea virginica Gmelin) to three centuries of anthropogenic eutrophication in Chesapeake Bay. Estu Coast Shelf Sci 62:679–689

    Google Scholar 

  • Kline DL, Kuntz NM, Breitbart M, Knowlton N, Rohwer H et al. (2006) Role of elevated organic carbon levels and microbial activity in coral mortality. Mar Ecol Prog Ser 314:119–125

    CAS  Google Scholar 

  • Koizumi Y, Kohno J, Matsuyama Y, Uchida T, Honjo T et al. (1996) Environmental features and the mass mortality of fish and shellfish during the Gonyaulax polygramma red tide occurred in and around Uwajima bay, Japan, in 1994. Nippon Suisan Gakkaishi 62:217–224 (in Japanese with English abstract)

    Google Scholar 

  • Kolbe K, Kaminski E, Michaelis H, Obert B, Rahme J et al. (1995) Macroalgal mass development in the Wadden Sea: first experiences with a monitoring system. Helgoland Meeresunter 49:519–528

    Google Scholar 

  • Kozuharov D, Evtimova V, Zaharieva D et al. (2007) Long-Term Changes of zooplankton and dynamics of eutrophication in the polluted system of the Struma river—Pchelina Reservoir (South-West Bulgaria). Act Zoolog Bulgar 59:191–202

    Google Scholar 

  • Kramarsky-Winter E, Downs CA, Downs A, Loya Y et al. (2009) Cellular responses in the coral Stylophora pistillata exposed to eutrophication from fish mariculture. Evolut Ecol Res 11:1–21

    Google Scholar 

  • Kraufvelin P, Salovius S, Christie H, Moy FE, Karez R, Pedersen MF et al. (2006) Eutrophication-induced changes in benthic algae affect the behaviour and fitness of the marine amphipod Gammarus locusta. Aquatic Bot 84:199–209

    Google Scholar 

  • Kumagai M (2008) Lake Biwa in the context of world lake problem. Verh Internat Verein Limnol 30:1–15

    CAS  Google Scholar 

  • Lamote M, Dunton KH (2006) Effects of drift macroalgae and light attenuation on chlorophyll flourescence and sediment sulfides in the seagrass Thalassia testudinum. Exper Mar Biol Ecol 334:174–186

    CAS  Google Scholar 

  • Lancelot C, Rousseau V (1994) Ecology of phaeocystis: the key role of colony forms. In: Green JC, Leadbeater BSC (eds) The Haptophyte Algae. Clarenton Press, Oxford. pp 229–245

    Google Scholar 

  • Lancelot C, Rousseau V, Schoemann V, Becquevort S et al. (2002) On the ecological role of the different life forms of Phaeocystis. In: Garcés E, Zingone A, Montresor M, Reguera B, Dale B (eds) Proceedings of the workshop LIFEHAB: life histories of microalgal species causing harmful blooms. Calvia, Majorca, Spain, octobre 2001. Research in Enclosed Seas series 12:71–75

    Google Scholar 

  • Landsberg JH (2002) The effects of harmful algal blooms on aquatic organisms. Rev Fish Sci 10:113–390

    Google Scholar 

  • Lapointe BE (1997) Nutrient thresholds for bottom-up control of macroalgal blooms on coral reefs in Jamaica and southeast Florida. Limnol Oceanogr 42:1119–1131

    CAS  Google Scholar 

  • Lapointe PE, Clark MW (1992) Nutrient inputs from the watershed and coastal eutrophication in the Florida keys. Estuaries 15:465–476

    CAS  Google Scholar 

  • Larkum AWD, Steven ADL (1994) ENCORE: the effect of nutrient enrichment on coral reefs. Experimental design and Research Programme. Mar Poll Bull 29:112–120

    CAS  Google Scholar 

  • Lehman PW, Boyer G, Hall C, Waller S, Gehrts K et al. (2005) Distribution and toxicity of a new colonial Microcystis aeruginosa bloom in San Francisco Bay estuary, California. Hydrobiologia 541:87–99

    CAS  Google Scholar 

  • Levin LA, Ekau W, Goody AJ, Jorissen F, Middelburg JJ, Naqvi W, Neira C, Rabalais N, Zhang N et al. (2009) Effects of natural and human-induced hypoxia on coastal benthos. Biogeosci Discuss 6:3563–3654

    Google Scholar 

  • Lewitus A, Brock LM, Burke MK, DeMattio KAS, Wilde SB et al. (2008) Lagoonal stormwater detention ponds as promoters of harmful algal blooms and eutrophication along the South Carolina coast. Harmful Algae 8:60–65

    CAS  Google Scholar 

  • Li Y, Smayda TJ (2000) Heterosigma akashiwo (Raphidophyceae): on prediction of the week of bloom initiation and maximum during the initial pulse of its bimodal bloom cycle in Narragansett Bay. Plank Biol Ecol 47:80–84

    Google Scholar 

  • Lim H, Diaz RJ, Hong J, Schaffner LC et al. (2006) Hypoxia and benthic community recovery in Korean coastal waters. Mar Poll Bull 52:1517–1526

    CAS  Google Scholar 

  • Loya Y (2007) How to influence environmental decision makers? The case of Eilat (Red Sea) coral reefs. J Exp Mar Biol Ecol 344:35–53

    Google Scholar 

  • Marshall HG, Egerton T, Burchardt L, Cerbin S, Kokocinski M et al. (2005) Long-term monitoring results of harmful algal populations in Chesapeake Bay and its major tributaries in Virginia, U.S.A. Oceanol Hydrobiol Stud 34:35–41

    Google Scholar 

  • Marshall HG, Hargraves PE, Burkholder JM, Parrow MW, Elbrächter M, Allen EH, Knowlton VM, Rublee PA, Hynes WL, Egerton TA, Remington DL, Wyatt KB, Lewitus AJ, Henrich VC et al. (2006). Taxonomy of Pfiesteria (Dinophyceae) Harmful Algae 5:481–496

    Google Scholar 

  • Matsumura-Tundisi T (1999) Diversidade de zooplancton em represas do Brasil, pp. 39–54. In: Henry R (ed), Ecologia de reservatorios: estrutura, funcao e aspectos sociais. FUNDIBIO/FAPESP, Botucatu, p 799

    Google Scholar 

  • Matsumura-Tundisi T, Tundisi JG (2005) Plankton richness in a eutrophic reservoir (Barra Bonita Reservoir, SP, Brazil), 542:367–378

    Google Scholar 

  • McComb AJ, Cambridge ML, Kirkman H, Kuo J et al. (1981) The biology of Australian seagrasses. In: Pate JS, McComb AJ (eds) The biology of australian plants. UWA Press, Western Australia, p 258

    Google Scholar 

  • McGann M, Alexander CR, Bay SM et al. (2003) Response of benthic foraminifera to sewage discharge and remediation in Santa Monica Bay, California. Mari Environ Res 56:299–342

    CAS  Google Scholar 

  • McGlathery KJ, Sundback K, Anderson IC et al. (2007) Eutrophication in shallow coastal bays and lagoons: the role of plants in the coastal filter. Mari Ecol Progr Ser 348:1–18

    CAS  Google Scholar 

  • Mellors J, Waycott M, Marsh H et al. (2005) Variation in biogeochemical parameters across intertidal seagrass meadows in the central Great Barrier Reef region. Mar Pollut Bull 51:335–342

    CAS  Google Scholar 

  • Menesguen A (1992) Modelling coastal eutrophication:the case of French Ulva mass blooms. Proceedings of the Internationl Conference on Marine Coastal Eutrophication. The response of marine transitional system to human impact:problems and perspectives for restoration. 21–24 Mars 1990, Bologne (Italie). Sci. Total Environ. pp 979–992

    Google Scholar 

  • Minhazul Islam (2011) SW8: eutrophication worsens ocean acidification of coastal waters. Nat Geosci 4. doi:10.1038/NGEO1297

    Google Scholar 

  • Miralto A, Ianora A, Poulet SA, Romano G, Buttino I, Scala S et al. (1999) Embryonic development in invertebrates is arrested by inhibitory compounds in diatoms. Mar Biotech 1:401–402

    CAS  Google Scholar 

  • Muscatine L, Falkowski PG, Dubinsky Z, Cook PA, McCloskey LR et al. (1989) The effect of external nutrient resources on the population dynamics of zooxanthellae in a coral reef. Proceedings of the Royal Society. London, Ser Biol Sci 236:311–324

    Google Scholar 

  • Muylaert K, Declerck S, Van-Wichelen J, De Meester I, Vyvermann W et al. (2006) An evaluation of the role of daphnids in controlling phytoplankton biomass in clear water versus turbid shallow lakes. Limnologica 36:69–78

    Google Scholar 

  • Nakazawa T, Sakai Y, Hsieh CH, Koitabashi T, Tayasu I, Yamamura N, Okuda N et al. (2010) Is the relationship between body size and trophic niche position time-invariant in a predatory fish? First stable isotope evidence. PLoS ONE 5(2):1–5:e9120

    Google Scholar 

  • Niemi A (1979) Blue green algal blooms and N/P ratio in the Baltic Sea. Acta Bot Fennica, 110:57–61

    CAS  Google Scholar 

  • Nikolaidis G, Koukaras K, Aligizaki K, Heracleous A, Kalopesa E, Moschandreou K, Tsolaki E, Mantoudis A et al. (2005) Harmful microalgal episodes in Greek coastal waters. J Biol Res 3:77–85

    Google Scholar 

  • Norkko A, Bonsdorff E (2008) Altered benthic prey-availability due to episodic oxygen deficiency caused by drifting algal mats. Mari Ecol 17:355–372

    Google Scholar 

  • Ostoijc AM (2000) Effect of eutrophication on changes in the composition of zooplankton in the Grošnica Reservoir (Serbia, Yugoslavia). Hydrobiologia 436:171–178

    Google Scholar 

  • Pace ML (1986) An empirical analysis of zooplankton community size structure across lake trophic gradients. Limnol Oceanogr 31:45–55

    Google Scholar 

  • Paerl HW (1997) Coastal eutrophication and harmful algal blooms: importance of atmospheric deposition and groundwater as ‘‘new’’nitrogen and other nutrient sources. Limnol Oceanogr 42:1154–1165

    CAS  Google Scholar 

  • Pan Y, Parsons ML, Busman M, Moller P, Dortch Q, Powell CL, Fryxell GA, Doucette GJ et al. (2001) Pseudonitzschia pseudodelicatissima—a confirmed producer of domoic acid from the northern Gulf of Mexico. Mari Ecol Progr Ser 220:83–92

    CAS  Google Scholar 

  • Park GS, Marshall HG (1997) Estuarine relationships between zooplankton community structure and trophic gradients. J Plank Res 22:121–136

    Google Scholar 

  • Park GS, Marshall HG (2000) Estuarine relationships between zooplankton community structure and trophic gradients. J Plankton Res 22:121–135

    Google Scholar 

  • Parsons ML, Dortch Q, Turner RE et al. (2002) Sedimentological evidence of an increase in Pseudo-nitzschia (Bacillariophyceae) abundance in response to coastal eutrophication. Limnol Oceanogr 47:551–558

    Google Scholar 

  • Perus J, Bonsdorff E (2004) Long-term changes in macrozoobenthos in the Åland Archipelago, Northern Baltic Sea. J Sea Res 52:45–56

    Google Scholar 

  • Pihl L (1994) Changes in the diet of demersal fish due to eutrophication-induced hypoxia in the Kattegat, Sweden. Can J Fish Aquat Sci 51:321–336

    Google Scholar 

  • Pihl L (2011) Changes in the Diet of demersal fish due to eutrophicationinduced hypoxia in the Kattegat, Sweden. Can J Fisher Aquat Sci 51:321–336

    Google Scholar 

  • Pinto-Coelho RM, Araújo MAR (1997) Efeitos da remoção de macrófitas sobre a disponibilidade de nitrato e amônia e o zooplâncton de um reservatório eutrófico raso. Anais do VIII Seminário Regional de Ecologia PPRN—UFSCAR 8:1217–1223

    Google Scholar 

  • Pinto-Coelho RM, Bezerra-Neto JF, Giani A, Macedo CF, Figueredo CC, Carvalho EA et al. (2003) The collapse of a Daphnia laevis (Birge, 1878) population in Pampulha reservoir, Brazil. Acta Limnol Brasil 15:53–70

    Google Scholar 

  • Pinto-Coelho RM, Bezerra-Neto JF, Morais-Jr CA et al. (2005) Effects of eutrophication on size and biomass of crustacean zooplankton in a tropical reservoir. Braz J Biol 65(2):325–338

    Google Scholar 

  • Powers SP, Peterson CH, Christian RR, Sullivan E, Powers MJ, Bishop MJ, Buzzelli CP et al. (2005) Effects of eutrophication on bottom habitat and prey resources of demersal fishes. Mar Ecol Prog Ser 302:233–243

    Google Scholar 

  • Pratchett MS, Munday PL, Wilson SK, Graham NAJ, Cinner JE, Bellwood DR, Jones GP, Polunin NVC, McClanahan TR et al. (2008) Effects of climate induced coral bleaching on coral-reef fishes ecological and economic consequences. Oceanogr Mari Biol: An Annual Rev 46:251–296

    Google Scholar 

  • Rabalais NN, Turner RE, Justic D, Dortch Q, Wiseman WJ, Sen GBK et al. (1996) Nutrient changes in the Mississippi River and system responses on the adjacent continental shelf. Estuaries 19:386–407

    CAS  Google Scholar 

  • Rabalais NN, Turner RE, D´ıaz RJ, Justi´c D et al. (2009) Global change and eutrophication of coastal waters. ICES J Mar Sci 66:1528–1537

    Google Scholar 

  • Radach G, Berg J, Hagmeier E et al. (1990) Long-term changes in the annual cycles of meteorological, hydrographic, nutrient and phytoplankton time series at Helgoland and at LV ELBE 1 in the German Bight. Cont Shelf Res 19:305–328

    Google Scholar 

  • Raffaelli D, Raven J, Poole L et al. (1998) Ecological impact of green macroalgal blooms. Oceanogr. Mar Biol Ann Rev 36:97–125

    Google Scholar 

  • Redfield AC, Ketchum BH, Richards FA (1963) The influence of organisms on the composition of seawater. In: Hill MN (ed) The Sea, Vol.2, Interscience, New York, pp 26–77

    Google Scholar 

  • Richardson K (1997) Harmful or exceptional phytoplankton blooms in the marine ecosystem. Advan Mari Biol 31:301–385

    Google Scholar 

  • Richardson SL (2006) Response of epiphytic foraminiferal communities to natural eutrophication in seagrass habitats off Man O’War Cay, Belize. Marine Ecol 27:404–416

    Google Scholar 

  • Richlen ML, Morton SL, Jamali EA, Rajan A, Anderson DM et al. (2010) The catastrophic 2008–2009 red tide in the Arabian Gulf region, with observations on the identification and phylogeny of the fish-killing dinoflagellate Cochlodinium polykrikoides. Harmful Algae 9:163–172

    Google Scholar 

  • Riegman R, Noordeloos AAM, Cadee GC et al. (1992) Phaeocystis blooms and eutrophication of the continental coastal zones of the North Sea Mar Biol 112:479–484

    Google Scholar 

  • Risk JM, Sammarco WP, Dinger NE et al. (1995) Bioerosion in Acropora across the continental shelf of the Great Barrier Reef. Coral Reefs 14:79–86

    Google Scholar 

  • Rogers CS (1990) Responses of coral reefs and reef organisms to sedimentation. Mar Ecol Prog Ser 62:185–202

    Google Scholar 

  • Rognerud S, Kjellberg G (1984) Relationships between phytoplankton and zooplankton biomass in large lakes. Verh Int Ver Limnol 22:666–671

    CAS  Google Scholar 

  • Romdhane MS, Eilertsen HC, Yahia OKD, Yahia MND et al. (1998) Toxic dinofl agellate blooms in Tunisian lagoons: causes and consequences for aquaculture. In: Reguera B, Blance J, Fernandez ML, Wyatt T (eds) Xunta de Galicia and Intergovernmental Oceanographic Commission of UNESCO, Harmful Algae, France, pp 80–83

    Google Scholar 

  • Rosenberg R (1985) Eutrophication-The future marine coastal nuisance? Mar Poll Bull 16:227–231

    CAS  Google Scholar 

  • Rosenberg R, Gray JS, Josefson AB, Pearson TH et al. (1987) Petersen’s benthic stations revisited. II. Is the Oslofjord and eastern Skagerrak enriched? J Exp Mar Biol Ecol 105:219–251

    Google Scholar 

  • Rybicki N, Jenter H, Carter V, Baltzer R, Turtora et al.(1997) Observations of the tidal flux between a submersed aquatic plant stand and the adjacent channel in the Potomac River near Washington, D.C. Limnol Oceanogr 42:307–317

    Google Scholar 

  • Sandstrom A, Karas P (2002) Effects of eutrophication on young-of-the-year freshwater fish communities in coastal areas of the Baltic. Environ Biol Fishes 63:89–101

    Google Scholar 

  • Sellner KG, Olson MM, Olli K (1996) Copepods interaction wity toxic and non-toxic Cyanobacteria from Gulf of Finland. Phycologia 35:177–182

    Google Scholar 

  • Sendacz S (1984) A study of the zooplankton community of Billings Reservoir—São Paulo. Hydrobiologia 113:121–127

    Google Scholar 

  • Sendacz S, Caleffi S, Santos-Soares J et al. (2006) Zooplankton biomass of reservoirs in different trophic conditions in the state of São Paulo, Brazil. Braz J Biol 66:337–350

    CAS  Google Scholar 

  • Sfriso A, Marcomini A, Pavoni B, Orio AA et al. (1993) Species composition, bio mass and net primary production in shallow coastal waters, the Venice Lagoon. Biores Technol 44:235–250

    Google Scholar 

  • Silberstein K, Chiffings AW, McComb AJ (1986) The loss of seagrass in Cockburn Sound, Australia. III. The effect of epiphytes on productivity of Posidonia australis Hook. F. Aqua Bot 24:355–371

    Google Scholar 

  • Smayda TJ (1990) Novel and nuisance phytoplankton blooms in the sea: evidence for a global epidemic. In: Toxic marine phytoplankton: Proc. 4th Int. Conf. Elsevier, pp 29–40

    Google Scholar 

  • Smith GB (1975) The 1971 red tide and its impact on certain reef communities in the mid-eastern Gulf of Mexico. Environ Letter 9:141–152

    CAS  Google Scholar 

  • Smith VH (2006) Responses of estuarine and coastal marine phytoplankton to nitrogen and phosphorus enrichment. Limnol Oceanogr 51:377–384

    CAS  Google Scholar 

  • Smith SV, Kimmerer WJ, Laws AA, Brock RE, Walsh TW et al. (1981) Kaneohe Bay sewage diversion experiment. Perspectives on ecosystem responses to nutritional perturbation. Pacif Sci 35:279–407

    CAS  Google Scholar 

  • Starr MH, Himmelman JH, Therriault JC et al. (1990) Direct coupling of marine invertebrate spawning with phytoplankton blooms. Science 247:246–248

    Google Scholar 

  • Stefanova K, Kamburska L, Moncheva S, Doncheva V, Slabakova N, Aleksandrova V (2007) Zooplankton community changes along the eutrophication gradient varna lakes varna bay (western black sea). Le Rapport Comm. Int. Mer. Mediterrane 38:605

    Google Scholar 

  • Straile D, Geller W (1998) Crustacean zooplankton in lake constance from 1920 to 1995: response to eutrophication and re-oligotrophication. Advan Limnol 53:255–274

    Google Scholar 

  • Strambler N, Popper N, Dubinsky Z, Stimson J et al. (1991) Effect of nutrient enrichment and water motion on the coral Pacillopora damicornis. Pacific Sci 45:299–307

    Google Scholar 

  • Tada K, Sakai K, Nakano Y, Takemura A, Montani S et al. (2003) Size-fractionated phytoplankton biomass in coral reef waters off Sesoko Island, Okinawa, Japan. Jour Plankton Res 25:991–997

    CAS  Google Scholar 

  • Tang S, Hodgkiss IJ, Dickman MD et al. (2002) Distribution of chlorophyll biomass in reverse to the nutrient gradient in Hong Kong waters. In: Ho KC, Lam IHY, Yu TS (eds) Prevention and management of harmful algal blooms in the South China sea. The association on harmful algal blooms in the south China sea, Hong Kong SAR, China, pp 173–180

    Google Scholar 

  • Thomas E, Gapotchenko T, Varekamp JC, Mecray EL, Bucholtz T, Brink MR et al. (2000) Benthic foraminifera and environmental changes in Long Island Sound. J Coast Res 16:641–655

    Google Scholar 

  • Thompson RC, Crowe TP, Hawkins SJ et al. (2002) Rocky intertidal communities: past environmental changes, present status and predictions for the next 25 years. Environ Conserv 29:168–191

    Google Scholar 

  • Tomascik T, Sander F (1987a) Effects of eutrophication on reef-building corals II. Structure of scleractinian coral communities on fringing reefs, Barbados, West Indies. Mari Biol 94:53–75

    Google Scholar 

  • Tomascik T, Sander F (1987b) Effects of eutrophication on reef building corals: reproduction of the reef-building coral Porites porites. Mari Biol 94:77–94

    Google Scholar 

  • Touchette BW, Burkholder JM (2000) Review of nitrogen and phosphorus metabolism in seagrasses. J Exp Mar Biol Ecol 250:133–167

    CAS  Google Scholar 

  • Tsugeki N, Oda H, Urabe J et al. (2003) Fluctuation of the zooplankton community in lake Biwa during the 20th century: a paleolimnological analysis. Limnology 4:101–107

    CAS  Google Scholar 

  • Udy JW, Dennison WC, Lee Long W, McKenzie LJ et al. (1999) Responses of seagrass to nutrients in the Great Barrier Reef, Australia. Mar Ecol Prog Ser 185:257–271

    CAS  Google Scholar 

  • Valiela I (2006) Global Coastal Change. Blackwell, Malden, MA, p 368

    Google Scholar 

  • Valiela I, McClelland J, Hauxwell J, Behr P, Hersh, Foreman K et al. (1997) Macroalgal blooms in shallow estuaries: controls and ecophysiological and ecosystem consequences. Limnol Oceanogr 42:1105–1118

    Google Scholar 

  • Van Duyl FC, Gast GJ, Steinhoff W, Kloff S, Veldhius MJW, Bak RPM et al. (2002) Factors influencing the short-term variation in phytoplankton composition and biomass in coral reef waters. Coral Reefs 21:293–306

    Google Scholar 

  • Van Katwijk MM, Vergeer LHT, Schmitz GHW, Roelofs JGM et al. (1997) Ammonium toxicity in eelgrass Zostera marina. Mar Ecol Prog Ser 157:159–173

    CAS  Google Scholar 

  • Van Woesik R, Tomascik T, Blake S et al. (1999) Coral assemblages and physico-chemical characteristics of the Whitsunday Islands: evidence of recent community changes. Mar Freshw Res 50:427–440

    Google Scholar 

  • Vollenweider RE (1976) Advances in defining critical loading of phosphorous in lake eutrophication. Memoir Dell’Istituto Italian Idriobio 33:53–83

    CAS  Google Scholar 

  • Walker D, Dennison W, Edgar G (1999) Status of Australian seagrass research and knowledge. In: Butler AJ, Jernakoff P (eds) Seagrass in Australia: strategic review and development of an R & D plan. CSIRO, Melbourne, pp 1–24

    Google Scholar 

  • Walsh JJ, Jolliff JK, Darrow BP, Lenes JM, Milroy SP, Remsen A, Dieterle DA, Carder KL, Chen FR, Vargo GA, Weisberg RH, Fanning KA, Muller-Karger FE, Shinn E., Steidinger KA, Heil CA, Tomas CR., Prospero JS, Lee TN, Kirkpatrick GJ, Whitledge TE, Stockwell DA, Villareal TA, Jochens AE, Bontempi PS (2006) Red tides in the Gulf of Mexico: where, when, and why? J Geophys Res 7:111 (C11003):1–46

    Google Scholar 

  • Wang B (2006) Cultural eutrophication in the Changjiang (Yangtze River) plume: history and perspective. Estu Coast Shelf Res 69:471–477

    Google Scholar 

  • Wildsmith MD, Rose TH, Potter IC, Warwick RM, Clarke KR, Valesini FJ et al. (2009) Changes in the benthic macroinvertebrate fauna of a large microtidal estuary following extreme modifications aimed at reducing eutrophication. Mari Poll Bull 58:1250–1262

    CAS  Google Scholar 

  • Wittenberg M, Hunte W (1992) Effects of eutrophication and sedimentation on juvenile corals I. Abundance, mortality and community structure. Mari Biol 112:131–138

    Google Scholar 

  • Work K, Havens K (2003) Zooplankton grazing on bacteria and cyanobacteria in a 36 eutrophic lake. J Plankton Res 25:1301–1307

    Google Scholar 

  • Worm B (2006) Effect of eutrophication, grazing, algal blooms on rocky shore. Limnol Oceanogr 51:569–579

    Google Scholar 

  • Yoon YH (2001) A summary on the red tide mechanisms of the harmful dinoflagellate, Cochlodinium polykrikoides in Korean coastal waters. Bull Plankton Soc Japan 48:113–120 (in Japanese with English abstract)

    Google Scholar 

  • Zervoudaki S, Nielsen TG, Carstensen J et al. (2009) Seasonal succession and composition of the zooplankton community along an eutrophication and salinity gradient exemplified by Danish waters J Plank Res 31:1475–1492

    Google Scholar 

  • Zhao S-Y, Lin Q-Q, Liu Z-W, Han B-P (2007) Characteristics of the metazoan zooplankton community in Xinghu Lake—a Southern sub-tropical lake. Acta Hydrobiologica Sinica 12(3):1–413

    Google Scholar 

  • Zohary T, Robarts RD (1989) Diurnal mixed layers and the long-term dominance of Microcystis aeruginosa. J Plank Res 11:25–48

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed M. Dorgham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dorgham, M. (2014). Effects of Eutrophication. In: Ansari, A., Gill, S. (eds) Eutrophication: Causes, Consequences and Control. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7814-6_3

Download citation

Publish with us

Policies and ethics