Skip to main content
Log in

Plant Fatty Acid Desaturases: Role in the Life of Plants and Biotechnological Potential

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

Fatty acid desaturases perform a key role in the maintenance of cell membrane homeostasis. They convert fatty acids of membrane lipids from saturated to unsaturated. The modulation of fatty acid unsaturation in cell membranes is one of the mechanisms of plant adaptation to traumatic environmental factors, both biotic and abiotic. The study of the mechanisms of the functioning of desaturases, as well as their localization and characteristics of their gene expression, carry out a fundamental role in our understanding of the processes of plant adaptation. In addition to their fundamental importance, such studies have an applied character. They will expand the potential of desaturases and put in place the foundations of a modern generation of transgenic plants, including those derived from genome-editing technologies. As a result, these studies deliver a broad benefit to humanity in the creation of stress-resistant crops or the biofortification of agricultural crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Aitzetmüller, K. and Tsevegsüren, N., Seed fatty acids, “front-end”-desaturases and chemotaxonomy—a case study in the Ranunculaceae, J. Plant Physiol., 1994, vol. 143, nos. 4–5, pp. 538–543.

    Article  Google Scholar 

  2. Abe, K., Araki, E., Suzuki, Y., et al., Production of high oleic/low linoleic rice by genome editing, Plant Physiol. Biochem., 2018, vol. 131, pp. 58–62.

    Article  CAS  PubMed  Google Scholar 

  3. Bai, Y., McCoy, J.G., Levin, E.J., et al., X-ray structure of a mammalian stearoyl-CoA desaturase, Nature, 2015, vol. 524, no. 7564, pp. 252–256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bonawitz, N.D., Ainley, W.M., Itaya, A., et al., Zinc finger nuclease-mediated targeting of multiple transgenes to an endogenous soybean genomic locus via non-homologous end joining, Plant Biotechnol. J., 2018, vol. 17, no. 4, pp. 750–761.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Buist, P.H., Chemistry of fatty acid desaturases, in Wiley Encyclopedia of Chemical Biology, Hoboken: Wiley, 2008, p. 3204.

    Google Scholar 

  6. Chazarreta-Cifre, L., Martiarena, L., De Mendoza, D., and Altabe, S.G., Role of ferredoxin and flavodoxins in Bacillus subtilis fatty acid desaturation, J. Bacteriol., 2011, vol. 193, no. 16, pp. 4043–4048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen, M. and Thelen, J.J., Acyl-lipid desaturase 2 is required for chilling and freezing tolerance in Arabidopsis,Plant Cell, 2013, vol. 25, no. 4, pp. 1430–1444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen, M. and Thelen, J.J., Acyl-lipid desaturase 1 primes cold acclimation response in Arabidopsis,Physiol. Plant, 2016, vol. 158, no. 1, pp. 11–22.

    Article  CAS  PubMed  Google Scholar 

  9. Chi, X., Zhang, Z., Chen, N., et al., Isolation and functional analysis of fatty acid desaturase genes from peanut (Arachis hypogaea L.), PLoS One, 2017, vol. 12, no. 12, p. e0189759.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Dar, A.A., Choudhury, A.R., Kancharla, P.K., and Arumugam, N., The FAD2 gene in plants: occurrence, regulation, and role, Front. Plant Sci., 2017, vol. 8, p. 1789.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Demorest, Z.L., Coffman, A., Baltes, N.J., et al., Direct stacking of sequence-specific nuclease-induced mutations to produce high oleic and low linolenic soybean oil, BMC Plant Biol., 2016, vol. 16, no. 1, p. 225.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Diaz, A.R., Mansilla, M.C., Vila, A.J., and De Mendoza, D., Membrane topology of the acyl-lipid desaturase from Bacillus subtilis,J. Biol. Chem., 2002, vol. 277, no. 50, pp. 48099–48106.

    Article  CAS  PubMed  Google Scholar 

  13. Ding, Z.T., Shen, J.Z., Pan, L.L., et al., CsSAD: a fatty acid desaturase gene involved in abiotic resistance in Camellia sinensis (L.), Genet. Mol. Res., 2016, vol. 15, no. 1, p. 15017512.

    CAS  PubMed  Google Scholar 

  14. Dominguez, T., Hernández, M.L., Pennycooke, J.C., et al., Increasing ω-3 desaturase expression in tomato results in altered aroma profile and enhanced resistance to cold stress, Plant Physiol., 2010, vol. 153, no. 2, pp. 655–665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dong, C.-J., Cao, N., Zhang, Z.G., and Shang, Q.M., Characterization of the fatty acid desaturase genes in cucumber: structure, phylogeny, and expression patterns, PLoS One, 2016, vol. 11, no. 3, p. e0149917.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Feng, J. Dong, Y., Liu, W., et al., Genome-wide identification of membrane-bound fatty acid desaturase genes in Gossypium hirsutum and their expressions during abiotic stress, Sci. Rep., 2017, vol. 7, p. 45711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gaj, T., Gersbach, C.A., and Barbas, C.F., ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering, Trends Biotechnol., 2013, vol. 31, no. 7, pp. 397–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gao, J., Wang, G., Ma, S., et al., CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum,Plant Mol. Biol., 2014, vol. 87, nos. 1–2, pp. 99–110.

    Article  PubMed  CAS  Google Scholar 

  19. Garba, L., Yussoff, M.A., Halim, K.B., et al., Homology modeling and docking studies of a Δ9-fatty acid desaturase from a cold-tolerant Pseudomonas sp. AMS8, PeerJ, 2018, vol. 6, p. e4347.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Gerasymenko, I.M., Sakhno, L.A., Kyrpa, T.N., et al., Characterization of Nicotiana tabacum plants expressing hybrid genes of cyanobacterial Δ9 or Δ12 acyl-lipid desaturases and thermostable lichenase, Russ. J. Plant Physiol., 2015, vol. 62, no. 3, pp. 283–291.

    Article  CAS  Google Scholar 

  21. Gostinčar, C., Turk, M., and Gunde-Cimerman, N., The evolution of fatty acid desaturases and cytochrome b5 in eukaryotes, J. Membr. Biol., 2010, vol. 233, nos. 1–3, pp. 63–72.

    Article  PubMed  CAS  Google Scholar 

  22. Guillou, H., D’Andrea, S., Rioux, V., et al., Distinct roles of endoplasmic reticulum cytochrome b5 and fused cytochrome b5-like domain for rat Δ6-desaturase activity, J. Lipid Res., 2004, vol. 45, no. 1, pp. 32–40.

    Article  CAS  PubMed  Google Scholar 

  23. Guy, J.E., Whittle, E., Kumaran, D., et al., The crystal structure of the Ivy Δ4-16:0-ACP desaturase reveals structural details of the oxidized active site and potential determinants of regioselectivity, J. Biol. Chem., 2007, vol. 282, no. 27, pp. 19863–19871.

    Article  CAS  PubMed  Google Scholar 

  24. Harwood, J.L., Plant Lipid Biosynthesis: Fundamentals and Agricultural Applications, Cambridge: Cambridge Univ. Press, 1998.

    Google Scholar 

  25. Haun, W., Coffman, A., Clasen, B.M., et al., Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family, Plant Biotechnol. J., 2014, vol. 12, no. 7, pp. 934–940.

    Article  CAS  PubMed  Google Scholar 

  26. Heinz, E., Biosynthesis of polyunsaturated fatty acids, in Lipid Metabolism in Plants, Moore T.S., Ed., Boca Raton, FL: CRC Press, 2018, pp. 55–56.

    Google Scholar 

  27. Hernández, M.L., Sicardo, M.D., and Martínez-Rivas, J.M., Differential contribution of endoplasmic reticulum and chloroplast ω-3 fatty acid desaturase genes to the linolenic acid content of olive (Olea europaea) fruit, Plant Cell Physiol., 2016, vol. 57, no. 1, pp. 138–151.

    Article  PubMed  CAS  Google Scholar 

  28. Hitz, W.D., Carlson, T.J., Booth, J.R., et al., Cloning of a higher-plant plastid omega-6 fatty acid desaturase cDNA and its expression in a cyanobacterium, Plant Physiol., 1994, vol. 105, no. 2, pp. 635–641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hu, L., Mu, J., Su, P., et al., Multi-functional roles of TaSSI2 involved in Fusarium head blight and powdery mildew resistance and drought tolerance, J. Integr. Agric., 2018, vol. 17, no. 2, pp. 368–380.

    Article  CAS  Google Scholar 

  30. Jiang, W., Zhou, H., Bi, H., et al., Demonstration of CRISPR/Cas9/sgRNA‑mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice, Nucleic Acids Res., 2013, vol. 41, p. 188.

    Article  CAS  Google Scholar 

  31. Jung, J.H., Kim, H., Go, Y.S., et al., Identification of functional BrFAD2-1 gene encoding microsomal delta-12 fatty acid desaturase from Brassica rapa and development of Brassica napus containing high oleic acid contents, Plant Cell Rep., 2011, vol. 30, no. 10, pp. 1881–1892.

    Article  CAS  PubMed  Google Scholar 

  32. Kamthan, A., Kamthan, M., Azam, M., et al., Expression of a fungal sterol desaturase improves tomato drought tolerance, pathogen resistance and nutritional quality, Sci. Rep., 2012, vol. 2, no. 1, p. 951.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Kaur, N., Alok, A., Shivani, et al., CRISPR/Cas9-mediated efficient editing in phytoene desaturase (PDS) demonstrates precise manipulation in banana cv. Rasthali genome, Funct. Integr. Genomics, 2018, vol. 18, no. 1, pp. 88–89.

    Article  CAS  Google Scholar 

  34. Lakhssassi, N., Zhou, Z., Liu, S., et al., Characterization of the FAD2 gene family in soybean reveals the limitations of gel-based TILLING in genes with high copy number, Front. Plant Sci., 2017, vol. 8, p. 324.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Li, F., Bian, C.S., Xu, J.X., et al., Cloning and functional characterization of SAD genes in potato, PLoS One, 2015, vol. 10, no. 3, p. e0122036.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Li, J.F., Zhang, D., and Sheen, J., Cas9-based genome editing in Arabidopsis and tobacco, Methods Enzymol., 2014, vol. 546, pp. 459–472.

    Article  CAS  PubMed  Google Scholar 

  37. Li, J.F., Zhang, D., and Sheen, J., Targeted plant genome editing via the CRISPR/Cas9 technology, Methods Mol. Biol., 2015, vol. 1284, pp. 239–255.

    Article  CAS  PubMed  Google Scholar 

  38. Li, S.F., Song, L.Y., Zhang, G.J., et al., Newly identified essential amino acid residues affecting Δ8-sphingolipid desaturase activity revealed by site-directed mutagenesis, Biochem. Biophys. Res. Commun., 2011, vol. 416, nos. 1–2, pp. 165–171.

    Article  CAS  PubMed  Google Scholar 

  39. Lindqvist, Y., Huang, W., Schneider, G., and Shanklin, J., Crystal structure of delta9 stearoyl-acyl carrier protein desaturase from castor seed and its relationship to other di-iron proteins, EMBO J., 1996, vol. 15, no. 16, pp. 4081–4092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu, Q., Singh, S.P., Brubaker, C.L., et al., Molecular cloning and expression of a cDNA encoding a microsomal ɷ-6 fatty acid desaturase from cotton (Gossypium hirsutum), Aust. J. Plant Physiol., 1999, vol. 26, no. 2, p. 101.

    Google Scholar 

  41. Liu, W., Li, W., He, Q., et al., Characterization of 19 genes encoding membrane-bound fatty acid desaturases and their expression profiles in Gossypium raimondii under low temperature, PLoS One, 2015, vol. 10, no. 4, p. e0123281.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. López Alonso, D., García-Maroto, F., Rodríguez-Ruizet, J., et al., Evolution of the membrane-bound fatty acid desaturases, Biochem. Syst. Ecol., 2003, vol. 31, no. 10, pp. 1111–1124.

    Article  CAS  Google Scholar 

  43. Los’, D.A., The structure, expression regulation, and activities of desaturases of fatty acids, Usp. Biol. Khim., 2001, vol. 1, pp. 163–198.

    Google Scholar 

  44. Los’, D.A., Desaturazy zhirnykh kislot (Desaturases of Fatty Acids), Moscow: Nauchnyi Mir, 2014, pp. 18–30.

  45. Los, D.A., Mironov, K.S., and Allakhverdiev, S.I., Regulatory role of membrane fluidity in gene expression and physiological functions, Photosynth. Res., 2013, vol. 116, pp. 489–509.

    Article  CAS  PubMed  Google Scholar 

  46. Lou, Y. and Shanklin, J., Evidence that the yeast desaturase Ole1p exists as a dimer in vivo, J. Biol. Chem., 2010, vol. 285, no. 25, pp. 19384–19390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lou, Y., Schwender, J., and Shanklin, J., FAD2 and FAD3 desaturases form heterodimers that facilitate metabolic channeling in vivo, J. Biol. Chem., 2014, vol. 289, no. 26, pp. 17996–18007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lyons, J.M., Chilling injury in plants, Ann. Rev. Plant Physiol., 1973, vol. 24, no. 1, pp. 445–466.

    Article  CAS  Google Scholar 

  49. Matsuda, O., Sakamoto, H., Hashimoto, T., and Iba, K., A temperature-sensitive mechanism that regulates post-translational stability of a plastidial ω-3 fatty acid desaturase (FAD8) in Arabidopsis leaf tissues, J. Biol. Chem., 2005, vol. 280, no. 5, pp. 3597–3604.

    Article  CAS  PubMed  Google Scholar 

  50. McCartney, A.W., Dyer, J.M., Dhanoa, P.K., et al., Membrane-bound fatty acid desaturases are inserted co-translationally into the ER and contain different ER retrieval motifs at their carboxy termini, Plant J., 2004, vol. 37, no. 2, pp. 156–173.

    Article  CAS  PubMed  Google Scholar 

  51. Moche, M., Shanklin, J., Ghoshal, A., and Lindqvist, Y., Azide and acetate complexes plus two iron-depleted crystal structures of the di-iron enzyme Δ9 stearoyl-acyl carrier protein desaturase—implications for oxygen activation and catalytic intermediates, J. Biol. Chem., 2003, vol. 278, pp. 25072–25080.

    Article  CAS  PubMed  Google Scholar 

  52. Mori, N., Moriyama, T., Toyoshima, M., and Sato, N., Construction of global acyl lipid metabolic map by comparative genomics and subcellular localization analysis in the red alga Cyanidioschyzon merolae,Front. Plant Sci., 2016, vol. 7, p. 958.

    PubMed  PubMed Central  Google Scholar 

  53. Naim, F., Dugdale, B., Kleidon, J., et al., Gene editing the phytoene desaturase alleles of Cavendish banana using CRISPR/Cas9, Transgenic Res., 2018, vol. 27, no. 5, pp. 451–460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nakamura, M.T. and Nara, T.Y., Structure, function, and dietary regulation of Δ6, Δ5, and Δ9 desaturases, Ann. Rev. Nutr., 2004, vol. 24, no. 1, pp. 345–376.

    Article  CAS  Google Scholar 

  55. Nakamura, S., Hondo, K., Kawara, T., et al., Conferring high-temperature tolerance to nontransgenic tomato scions using graft transmission of RNA silencing of the fatty acid desaturase gene, Plant Biotechnol. J., 2016, vol. 14, no. 2, pp. 783–790.

    Article  CAS  PubMed  Google Scholar 

  56. Na-Ranong, S., Laoteng, K., Kittakoop, P., et al., Targeted mutagenesis of a fatty acid Δ6-desaturase from Mucor rouxii: role of amino acid residues adjacent to histidine-rich motif II, Biochem. Biophys. Res. Commun., 2006, vol. 339, no. 4, pp. 1029–1034.

    Article  CAS  PubMed  Google Scholar 

  57. Napier, J.A., Michaelson, L.V., and Sayanova, O., The role of cytochrome b5 fusion desaturases in the synthesis of polyunsaturated fatty acids, Prostaglandins, Leukotrienes Essent. Fatty Acids, 2003, vol. 68, no. 2, pp. 135–143.

    Article  CAS  Google Scholar 

  58. Odipio, J., Alicai, T., Ingelbrecht, I., et al., Efficient CRISPR/Cas9 genome editing of phytoene desaturase in cassava, Front. Plant Sci., 2018, vol. 8, p. 1780.

    Article  Google Scholar 

  59. Okuley, J., Lightner, J., Feldmann, K., et al., Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis, Plant Cell Online, 1994, vol. 6, no. 1, pp. 147–158.

    CAS  Google Scholar 

  60. Okuzaki, A., Ogawa, T., Koizuka, C., et al., CRISPR/Cas9‑mediated genome editing of the fatty acid desaturase 2 gene in Brassica napus,Plant Physiol. Biochem., 2018, vol. 131, pp. 63–69.

    Article  CAS  PubMed  Google Scholar 

  61. Osakabe, Y. and Osakabe, K., Genome editing with engineered nucleases in plants, Plant Cell Physiol., 2015, vol. 56, no. 3, pp. 389–400.

    Article  CAS  PubMed  Google Scholar 

  62. Pandey, M.K., Wang, M.L., Qiao, L., et al., Identification of QTLs associated with oil content and mapping FAD2 genes and their relative contribution to oil quality in peanut (Arachis hypogaea L.), BMC Genet., 2014, vol. 15, no. 1, p. 133.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Peng, D., Zhou, B., Jiang, Y., et al., Enhancing freezing tolerance of Brassica napus L. by overexpression of a stearoyl-acyl carrier protein desaturase gene (SAD) from Sapium sebiferum (L.) Roxb, Plant Sci., 2018, vol. 272, pp. 32–41.

    Article  CAS  PubMed  Google Scholar 

  64. Reed, D.W., Schäfer, U.A., and Covello, P.S., Characterization of the Brassica napus extraplastidial linoleate desaturase by expression in Saccharomyces cerevisiae,Plant Physiol., 2000, vol. 122, no. 3, pp. 715–720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Routaboul, J.M., Skidmore, C., Wallis, J.G., and Browse, J., Arabidopsis mutants reveal that short- and long-term thermotolerance have different requirements for trienoic fatty acids, J. Exp. Bot., 2012, vol. 63, no. 3, pp. 1435–1443.

    Article  CAS  PubMed  Google Scholar 

  66. Schlueter, J.A., Vasylenko-Sanders, I.F., Deshpande, S., et al., The FAD2 gene family of soybean: insights into the structural and functional divergence of a paleopolyploid genome, Crop Sci., 2007, vol. 47, suppl. 1, pp. 14–26.

    Article  CAS  Google Scholar 

  67. Schultz, D.J., Suh, M.C., and Ohlrogge, J.B., Stearoyl-acyl carrier protein and unusual acyl-acyl carrier protein desaturase activities are differentially influenced by ferredoxin, Plant Physiol., 2000, vol. 124, no. 2, pp. 681–692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Shan, Q., Wang, Y., Li, J., and Gao, C., Genome editing in rice and wheat using the CRISPR/Cas system, Nat. Protoc., 2014, vol. 9, pp. 2395–2410.

    Article  CAS  PubMed  Google Scholar 

  69. Shanklin, J. and Cahoon, E.B., Desaturation and related modifications of fatty acids 1, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1998, vol. 49, no. 1, pp. 611–641.

    Article  CAS  PubMed  Google Scholar 

  70. Shanklin, J., Guy, J.E., Mishra, G., and Lindqvist, Y., Desaturases: emerging models for understanding functional diversification of di-iron-containing enzymes, J. Biol. Chem., 2009, vol. 284, no. 28, pp. 18559–18563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Shi, Y., Yue, X., and An, L., Integrated regulation triggered by a cryophyte ω-3 desaturase gene confers multiple-stress tolerance in tobacco, J. Exp. Bot., 2018, vol. 69, no. 8, pp. 2131–2148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Song, N., Hu, Z., Li, Y., et al., Overexpression of a wheat stearoyl-ACP desaturase (SACPD) gene TaSSI2 in Arabidopsisssi2 mutant compromise its resistance to powdery mildew, Gene, 2013, vol. 524, no. 2, pp. 220–227.

    Article  CAS  PubMed  Google Scholar 

  73. Sperling, P., Ternes, P., Zank, T.K., et al., The evolution of desaturases, Prostaglandins, Leukotrienes Essent. Fatty Acids, 2003, vol. 68, no. 2, pp. 73–95.

    Article  CAS  Google Scholar 

  74. Sui, N., Wang, Y., Liu, S., et al., Transcriptomic and physiological evidence for the relationship between unsaturated fatty acid and salt stress in peanut, Front. Plant Sci., 2018, vol. 9, p. 7.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Tang, G.Q., Novitzky, W.P., Carol Griffin, H., et al., Oleate desaturase enzymes of soybean: evidence of regulation through differential stability and phosphorylation, Plant J., 2005, vol. 44, no. 3, pp. 433–446.

    Article  CAS  PubMed  Google Scholar 

  76. Teixeira, M.C., Carvalho, I.S., and Brodelius, M., ω-3 fatty acid desaturase genes isolated from purslane (Portulaca oleracea L.): expression in different tissues and response to cold and wound stress, J. Agric. Food Chem., 2010, vol. 58, no. 3, pp. 1870–1877.

    Article  CAS  PubMed  Google Scholar 

  77. Wada, H., Schmidt, H., Heinz, E., and Murata, N., In vitro ferredoxin-dependent desaturation of fatty acids in cyanobacterial thylakoid membranes, J. Bacteriol., 1993, vol. 175, no. 2, pp. 544–547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wang, C.T. and Xu, Y.N., The 5' untranslated region of the FAD3 mRNA is required for its translational enhancement at low temperature in arabidopsis roots, Plant Sci., 2010, vol. 179, no. 3, pp. 234–240.

    Article  CAS  Google Scholar 

  79. Wang, H.S., Yu, C., Tang, X.F., et al., Antisense-mediated depletion of tomato endoplasmic reticulum omega-3 fatty acid desaturase enhances thermal tolerance, Plant Biotechnol. J., 2010, vol. 52, no. 6, pp. 568–577.

    CAS  Google Scholar 

  80. Wang, H.-S., Wierzbicki, S.A., Aegerter, M., et al., A tomato endoplasmic reticulum (ER)-type omega-3 fatty acid desaturase (LeFAD3) functions in early seedling tolerance to salinity stress, Plant Cell Rep., 2014, vol. 33, no. 1, pp. 131–142.

    Article  CAS  PubMed  Google Scholar 

  81. Wang, H., Klein, M.G., Zou, H., et al., Crystal structure of human stearoyl–coenzyme A desaturase in complex with substrate, Nat. Struct. Mol. Biol., 2015, vol. 22, no. 7, pp. 581–585.

    Article  CAS  PubMed  Google Scholar 

  82. Wen, S., Liu, H., Li, X., et al., TALEN-mediated targeted mutagenesis of fatty acid desaturase 2 (FAD2) in peanut (Arachis hypogaea L.) promotes the accumulation of oleic acid, Plant Mol. Biol., 2018, vol. 97, nos. 1–2, pp. 177–185.

    Article  CAS  PubMed  Google Scholar 

  83. Xue, Y., Chen, B., Win, A.N., et al., Omega-3 fatty acid desaturase gene family from two ω-3 sources, Salvia hispanica and Perilla frutescens: cloning, characterization and expression, PLoS One, 2018, vol. 13, no. 1, p. e0191432.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Yadav, N.S., Wierzbicki, A., Aegerter, M., et al., Cloning of higher plant omega-3 fatty acid desaturases, Plant Physiol., 1993, vol. 103, no. 2, pp. 467–476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yang, Q., Fan, C., Guo, Z., et al., Identification of FAD2 and FAD3 genes in Brassica napus genome and development of allele-specific markers for high oleic and low linolenic acid contents, Theor. Appl. Genet., 2012, vol. 125, no. 4, pp. 715–729.

    Article  CAS  PubMed  Google Scholar 

  86. You, F.M., Li, P., Kumar, S., et al., Genome-wide identification and characterization of the gene families controlling fatty acid biosynthesis in flax (Linum usitatissimum L), J. Proteomics Bioinf., 2014, vol. 7, no. 10, pp. 310–326.

    CAS  Google Scholar 

  87. Yu, C., Wang, H.S., Yang, S., et al., Overexpression of endoplasmic reticulum omega-3 fatty acid desaturase gene improves chilling tolerance in tomato, Plant Physiol. Biochem., 2009, vol. 47, nos. 11–12, pp. 1102–1112.

    Article  CAS  PubMed  Google Scholar 

  88. Yuan, S., Wu, X., Liu, Z., et al., Abiotic stresses and phytohormones regulate expression of FAD2 gene in Arabidopsis thaliana,J. Integr. Agric., 2012, vol. 11, no. 1, pp. 62–72.

    Article  CAS  Google Scholar 

  89. Yurchenko, O.P., Park, S., Ilut, D.C., et al., Genome-wide analysis of the omega-3 fatty acid desaturase gene family in Gossypium,BMC Plant Biol., 2014, vol. 14, no. 1, p. 312.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Yur’eva, N.O., Kirsanova, S.N., Kukushkina, L.N., et al., Expression of the gene encoding Δ12 acyl-lipid desaturase from Synechocystis sp. PCC 6803 improves potato plant resistance to late blight infection, Russ. J. Plant Physiol., 2014, vol. 61, no. 5, pp. 672–678.

    Article  CAS  Google Scholar 

  91. Zäuner, S., Jochum, W., Bigorowski, T., Benning, C., et al., A cytochrome b5-containing plastid-located fatty acid desaturase from Chlamydomonas reinhardtii,Eukaryotic Cell, 2012, vol. 11, no. 7, pp. 856–863.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Zhang, D., Pirtle, I.L., Park, S.J., et al., Identification and expression of a new delta-12 fatty acid desaturase (FAD2-4) gene in upland cotton and its functional expression in yeast and Arabidopsis thaliana plants, Plant Physiol. Biochem., 2009, vol. 47, no. 6, pp. 462–471.

    Article  CAS  PubMed  Google Scholar 

  93. Zhang, J., Zhu, J.Q., Zhu, Q., et al., Arabidopsis fatty acid desaturase FAD2 is required for salt tolerance during seed germination and early seedling growth, PLoS One, 2012, vol. 7, no. 1, p. e30355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhang, Y., Maximova, S.N., and Guiltinan, M.J., Characterization of a stearoyl-acyl carrier protein desaturase gene family from chocolate tree, Theobroma cacao L., Front. Plant Sci., 2015, vol. 6, p. 239.

    PubMed  PubMed Central  Google Scholar 

  95. Zhang, Z., Wei, X., Liu, W., et al., Genome-wide identification and expression analysis of the fatty acid desaturase genes in Medicago truncatula,Biochem. Biophys. Res. Commun., 2018, vol. 499, no. 2, pp. 361–367.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. A. Berestovoy or I. V. Goldenkova-Pavlova.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berestovoy, M.A., Pavlenko, O.S. & Goldenkova-Pavlova, I.V. Plant Fatty Acid Desaturases: Role in the Life of Plants and Biotechnological Potential. Biol Bull Rev 10, 127–139 (2020). https://doi.org/10.1134/S2079086420020024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086420020024

Keywords:

Navigation