Skip to main content
Log in

A tomato endoplasmic reticulum (ER)-type omega-3 fatty acid desaturase (LeFAD3) functions in early seedling tolerance to salinity stress

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Transgenic tomato plants overexpressing LeFAD3 sense and antisense sequences were generated. Salt stress suppressed the growth of WT and antisense plants to a higher extent than that in sense plants.

Abstract

In this study, we investigated the role of the LeFAD3-encoding ER-type omega-3 fatty acid desaturase in salt tolerance in tomato plants. We created transgenic tomato plants by overexpressing its sense and antisense sequences under the control of the cauliflower mosaic virus 35S promoter. Based on the results of northern and western blotting as well as quantitative reverse transcription-polymerase chain reaction, sense plants expressed more desaturase than wild-type (WT) plants, whereas antisense plants expressed less desaturase than WT. Salt stress suppressed the growth of both WT and antisense plants to a higher extent than that in sense plants, which can be attributed to the fact that sense plants performed better in maintaining the integrity of the membrane system, as revealed by electron microscopy. The concomitant increase in superoxide dismutase (EC 1.15.1.1) and ascorbate peroxidase (EC 1.11.1.7) may have alleviated the photoinhibition caused by the increased level of ROS in sense plants. Our results suggest that LeFAD3 overexpression can enhance the tolerance of early seedlings to salinity stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DAs:

Dienoic fatty acids

DGDG:

Digalactosyldiglycerol

ER:

Endoplasmic reticulum

LeFAD3:

Lycopersicon esculentum omega-3 fatty acid desaturase

MGDG:

Monogalactosyl- diacylglycerol

PC:

Phosphatidylcholine

PE:

Phosphatidylethanolamine

PFD:

Photon flux density

PG:

Phosphatidylglycerol

PVDF:

Polyvinylidene fluoride

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

SQDG:

Sulfoquinovosyldiglycerol

TAs:

Trienoic fatty acids

18:1:

Oleic acid

18:2:

Linoleic acid

18:3:

Linolenic acid

References

  • Allakhverdiev SI, Kinoshita M, Inaba M, Suzuki I, Murata N (2001) Unsaturated fatty acids in membrane lipids protect the photosynthetic machinery against salt induced damage in Synechococcus. Plant Physiol 125:1842–1853

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Collados R, Andreu V, Picorel R, Alfonso M (2006) A light-sensitive mechanism differently regulates transcription and transcript stability of omega-3 fatty-acid desaturases (FAD3, FAD7 and FAD8) in soybean photosynthetic cell suspensions. FEBS Lett 580:4934–4940

    Article  CAS  PubMed  Google Scholar 

  • Cushman JC, Bohnert HJ (2000) Genomic approaches to plant stress tolerance. Curr Opin Plant Biol 3:117–124

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Theodoulou FL, Delrot S (2001) The function of inter- and intracellular glutathione transport systems in plants. Trends Plant Sci 4:486–492

    Article  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases I. Occurrence in higher plants. Plant Physiol 59:309–314

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gossett DR, Millhollon EP, Lucas MC (1994) Antioxidant response to NaCl stress in salt-tolerant and salt-sensitive cultivars of cotton. Crop Sci 34:706–714

    Article  CAS  Google Scholar 

  • Hamada T, Kodama H, Takeshita K, Utsumi H, Iba K (1998) Characterization of transgenic tobacco with an increased α-linolenic acid level. Plant Physiol 118:591–598

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Harwood JL (1980) Plant acyl lipids: structure, distribution and analysis. In: Stumpf PK, Conn EE (eds) The biochemistry of plants. Academic Press, New York, pp 1–55

    Google Scholar 

  • Holsters M, Waele DDe, Depicker A (1978) Transfection and transformation of Agrobacterium tumefaciens. Mol Gen Genet 163:181–187

    Article  CAS  PubMed  Google Scholar 

  • Horiguchi G, Iwakawa H, Kodama H, Kawakami N, Nishimura M, Iba K (1996) Expression of a gene for plastid ω-3 fatty acid desaturase and changes in lipid and fatty acid compositions in light-and dark-grown wheat leaves. Physiol Plant 96:275–283

    Article  CAS  Google Scholar 

  • Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1995) A simple and general method for transferring gene into plants. Science 227:1229–1231

    Google Scholar 

  • Huang CH, He WL, Guo JK, Chang XX, Su PX, Zhang LX (2005) Increased sensitivity to salt stress in an ascorbate-deficient Arabidopsis mutant. Exp Bot 56:3041–3049

    Article  CAS  Google Scholar 

  • Iba K, Gibson S, Nishiuchi T, Fuse T, Nishimura M, Arondel V, Hugly S, Somerville C (1993) A gene encoding a chloroplast omega-3 fatty acid desaturase complements alterations in fatty acid desaturation and chloroplast copy number of the fad7 mutant of Arabidopsis thaliana. J Biol Chem 268:24099–24105

    CAS  PubMed  Google Scholar 

  • Im YJ, Han O, Chung GC, Cho BH (2002) Antisense expression of an Arabidopsis omega-3 fatty acid desaturase gene reduces salt/drought tolerance in transgenic tobacco plants. Mol Cells 13:264–271

    CAS  PubMed  Google Scholar 

  • Jimenez A, Hernandez JA, del Rio LA, Sevilla F (1997) Evidence for the presence of the ascorbate–glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol 114:272–284

    Google Scholar 

  • Kayani SA, Naqvi HH, Ting IP, Kumamoto J (1990) Effect of salinity on fatty acid and fatty alcohol composition during the germination of jojoba (Simmondsia chinensis) seeds. J Agric Food Chem 38:1269–1271

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Lemieux B, Miquel M, Browse J, Somerville C (1990) Mutants of Arabidopsis with alterations in seed lipid fatty acid composition. Theor Appl Gene 80:234–240

    Article  CAS  Google Scholar 

  • Liu XY, Yang JH, Li B, Meng QW (2006) Antisense-mediated depletion of tomato chloroplast omega-3 fatty acid desaturase enhances thermal tolerance. J Integr Plant Biol 48:1096–1107

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real- time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    Article  CAS  PubMed  Google Scholar 

  • Matos AR, Hourton-Cabassa C, Cicek D, Rezé N, Arrabaça JD, Moreau F, Zachowski A (2007) Alternative oxidase involvement in cold stress response of Arabidopsis thaliana fad2 and FAD3+ cell suspensions altered in membrane lipid composition. Plant Cell Physiol 48:856–865

    Article  CAS  PubMed  Google Scholar 

  • McConn M, Browse J (1996) The critical requirement for linoleic acid in pollen development, not photosynthesis, in an Arabidopsis mutant. Plant Cell 8:403–416

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol 150:473–497

    Article  Google Scholar 

  • Nagata T, Todoriki S, Masumizu T, Suda I, Furuta S, Du Z, Kikuchi S (2003) Levels of active oxygen species are controlled by ascorbic acid and anthocyanin in Arabidopsis. J Agric Food Chem 51:2992–2999

    Article  CAS  PubMed  Google Scholar 

  • Nishiuchi T, Iba K (1998) Roles of plastid ω-3 fatty acid desaturases in defence response of higher plants. J Plant Res 111:481–486

    Article  CAS  Google Scholar 

  • Ohlrogge J, Browse J (1995) Lipid biosynthesis. Plant Cell 7:957–970

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sairam PK, Srivastava GC (2002) Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Sci 162:897–904

    Article  CAS  Google Scholar 

  • Sakamoto A, Murata N (2002) The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ 25:163–171

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, a laboratory manual, vols 1, 2, 3. Cold Spring Harbor Laboratory Press, NY

  • Schöffl F, Prandl R, Reindl A (1999) Molecular responses to heat stress. In: Shinozaki K, Yamaguchi-Shinozaki K (eds) Molecular responses to cold, drought, heat and salt stress in higher Plants. R. G. Landes Company, Austin, pp 81–98

    Google Scholar 

  • Shah S, Xin ZG, Browse J (1997) Overexpression of the FAD3 desaturase gene in a mutant of Arabidopsis. Plant Physiol 114:1533–1539

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Somerville C, Browse J (1996) Dissecting desaturases: plants prove advantageous. Trends in Cell Biol 6:148–153

    Article  CAS  Google Scholar 

  • Takahashi MA, AsAda K (1983) Superoxide anion permeability of phospholipid membranes and chloroplast thylakoids. chloroplast thylakoids. Arch Biochem Biophys 226:558–566

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Hibino T, Hayashi Y, Tanaka A, Kishitani S, Takabe T, Yokota S, Takabe T (1999) Salt tolerance of transgenic rice overexpressing yeast mitochondrial Mn-SOD in chloroplasts. Plant Sci 148:131–138

    Article  CAS  Google Scholar 

  • Teixeira MC, Carvalho IS, Brodelius M (2010) ω-3 fatty acid desaturase genes isolated from purslane (Portulaca oleracea L.): expression in different tissues and response to cold and wound stress. J Agric Food Chem 58:1870–1877

    Article  CAS  PubMed  Google Scholar 

  • Van Kooten O, Snel JPH (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth Res 25:147–150

    Article  PubMed  Google Scholar 

  • Vrinten P, Hu ZHY, Munchinsky MA, Rowland G, Qiu X (2005) Two FAD3 desaturase genes control the level of linolenic acid in flax seed. Plant Physiol 39:79–87

    Article  Google Scholar 

  • Wang AG, Luo GH (1990) Quantitative relation between the reaction of hydroxylamine and superoxide anion radicals in plants. Plant Physiol 6:55–57

    CAS  Google Scholar 

  • Wang HS, Yu Ch, Tang XF, Wang LY, Dong XCh, Meng QW (2010) Antisense-mediated depletion of tomato endoplasmic reticulum omega-3 fatty acid desaturase enhances thermal tolerance. J Integr Plant Biol 52:568–577

    Article  CAS  PubMed  Google Scholar 

  • Xue WY, Xing YZ, Weng XY, Zhao Y, Tang WJ, Wang L, Zhou HJ, Yu SB, Xu CG, Li XH, Zhang QF (2008) Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet 40:761–767

    Article  CAS  PubMed  Google Scholar 

  • Yadav NS, Wierzbicki A, Aegerter M, Caster CS, Pérez-Grau L, Kinney AJ, Hitz WD, Booth JR, Schweiger B, Stecca KL, Allen SM, Blackwell M, Reiter RS, Carlson TJ, Russell SH, Feldmann KA, Pierce J, Browse J (1993) Cloning of higher plant omega-3 fatty acid desaturases. Plant Physiol 103:467–476

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang XH, Wen XG, Gong HM, Lu QT, Yang ZP, Tang YL, Liang Z, Lu CM (2007) Genetic engineering of the biosynthesis of glycinebetaine enhances thermotolerance of photosystem II in tobacco plants. Planta 225:719–733

    Article  CAS  PubMed  Google Scholar 

  • Yu B, Xu C, Benning C (2002) Arabidopsis disrupted in SQD2 encoding sulfolipid synthase is impaired in phosphate limited growth. Proc Natl Acad Sci USA 99:5732–5737

    Article  CAS  PubMed  Google Scholar 

  • Yu CH, Wang HS, Yang Sh, Tang XF, Duan M, Meng QW (2009) Overexpression of endoplasmic reticulum omega-3 fatty acid desaturase gene improves chilling tolerance in tomato. Plant Physiol Biochem 47:1102–1112

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Barg R, Yin M, Yardena GD, Alicia LF, Salts Y, Shabtai S, Gozal BH (2005) Modulated fatty acid desaturation via overexpression of two distinct ω-3 desaturases differentially alters tolerance to various abiotic stresses in transgenic tobacco cells and plants. Plant J 44:361–371

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  CAS  PubMed  Google Scholar 

  • Zou J, Abrams GD, Barton DL, Taylor DC, Pomeroy MK, Abrams SR (1995) Induction of lipid and oleoisin biosynthesis by (+)-abscisic and its metabolites in microspore-derived embryos of Brassica napus L. cv Reston. Plant Physiol 108:63–571

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (31101554), the Natural Science Foundation of Zhejiang province (Y3110340 and LQ12C15002), Zhejiang Higher School Innovative Research Team (T200916), “Three Rural six party” Agricultural science and technology cooperation projects of Zhejiang Province (113-2045210160), Vegetable Innovation Group Fund of Zhejiang Province (2009R50026), and Cucurbit Vegetable Innovation Strategic Alliance Fund of Zhejiang Province (No. 20101107).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua-Sen Wang or Qing-Wei Meng.

Additional information

Communicated by X. S. Zhang.

H.-S. Wang and C. Yu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, HS., Yu, C., Tang, XF. et al. A tomato endoplasmic reticulum (ER)-type omega-3 fatty acid desaturase (LeFAD3) functions in early seedling tolerance to salinity stress. Plant Cell Rep 33, 131–142 (2014). https://doi.org/10.1007/s00299-013-1517-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-013-1517-z

Keywords

Navigation