Skip to main content
Log in

The effect of chemical composition and roughness of titanium nickelide surface on proliferative properties of mesenchymal stem cells

  • Materials for Insuring Human Life Activity and Environment Protection
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The results of the investigation of the proliferation effect on a mesenchymal stem cell (MSC) culture and the estimates on cytotoxicity of surfaces of titanium nickelide specimens prepared using special mechanical and electrochemical methods and characterized by different morphology and roughness are presented. The specimens of the alloy based on titanium nickelide are shown not to exert any toxic action on the MSCs of rats. When cultivated in the presence of the tested materials or being on their surfaces, MSCs preserved their viability, adhesive and morphological properties, and the ability for in vitro proliferation. This was confirmed by the following methods: cell counting in a Goryaev chamber, MTT, flow cytometry, and light and fluorescent microscopy. It was revealed that the proliferation processes are weakly pronounced on the surface of TH1(B) specimens whose C10–11 class roughness was achieved by multistage mechanical grinding to “high luster” and subsequent electrolytic grinding. On the contrary, the C7 class roughness of the TH1(A) specimen surfaces achieved by chemical etching and subsequent electrolytic grinding is more optimal for MSC proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abugov, S.A., Puretskii, M.V., Rudenko, P.A., et al., Results of Endovascular Stenting of Bifurcation Stenosises of Sicks with Heart Ishemic Illness, Kardiologiya, 1998, No. 8, pp. 7–11.

  2. Arablinskii, A.V., Rogan, S.V., and Sidel’nikov, A.V., Stenting of Coronar Artery in Clinical Practice, Kardiologiya, 2000, No. 9, pp. 100–105.

  3. Kornilov, I.I., Belousov, O.K., and Kachur, E.V., Nikelid titana i drugie splavy s effektom pamyati (Titanium Nickelide and Other Shape Memory Alloys), Moscow: Nauka, 1977.

    Google Scholar 

  4. Lotkov, A.I., Khachin, V.N., Grishkov, V.N., Meisner, L.L., and Sivokha, V.P., Shape Memory Alloys, in Fizicheskaya mezomekhanika i komp’yuternoe konstruirovanie materialov (Physical Mesomechanics and Computer Construction of Materials), Novosibirsk: Nauka, 1995, vol. 2, pp. 202–213.

    Google Scholar 

  5. Zhuravlev, V.N. and Pushin, V.G., Splavy s termomekhanicheskoi pamyat’yu i ikh primenenie v meditsine (Alloys with Thermomechanical Memory and Their Use in Medicine), Ekaterinburg: Ural. Otd. Ross. Akad. Nauk, 2000.

    Google Scholar 

  6. Meisner, L.L., Mechanical and Physico-Chemical Properties of Titanium Nickelide Based Alloys with Thin Surface Layers Modified by Charged Particle Flows, Fiz. Mezomekh., 2004, vol. 7,Sp. Number, part 2, pp. 169–172.

    Google Scholar 

  7. Lotkov, A.I., Meisner, L.L., and Grishkov, V.N., Titanium Nickelide-Based Alloys: Surface Modification with Ion Beams, Plasma Flows, and Chemical Treatment, Phys. Met. Metallogr., 2005, vol. 99, no. 5, pp. 508–519.

    Google Scholar 

  8. Williams, D., Biocompatibility of Clinical Implant Materials, Boca Raton: CRC Press, 1981.

    Google Scholar 

  9. Shabalovskaya, S.A., Anderegg, J., Laab, F., et al., Surface Conditions of Nitinol Wires, Tubing and As-Cast Alloys. The Effect of Chemical Etching, Aging in Boiling Water, and Heat Treatment, J. Biomed. Mater. Res., 2003, vol. 65, pp. 193–203.

    Article  CAS  Google Scholar 

  10. Biosovmestimost’ (Biocompatibility), Sevast’yanov, V.I., Ed., Moscow: ITs VNII Geosistem, 1999.

    Google Scholar 

  11. Shakhov, V.P., Khlusov, I.A., Dambaev, G.S., et al., Methods of Cell Culture, Artificial Organs and Biomaterial Study, in: Vvedenie v metody kul’tury kletok, bioinzhenerii organov i tkanei (Introduction to the Cell Culture, Organ and Tissue Bioengineering Methods), Tomsk: STT, 2004.

    Google Scholar 

  12. Korzh, N.A., Kladchenko, L.A., and Malyshkina, S.V., Implantation Materials and Osteogenesis. Role of Optimization and Stimulation in Bone Reconstruction, Ortoped., Travmatol. Protezir., 2008, No. 4, pp. 5–14.

  13. Vladimirskaya, E.V., Maiorova, O.A., Rumyantsev, S.A., and Rumyantsev, A.G., Stem Cells and Intercell Interactions, in Biologicheskie osnovy i perspektivy terapii stvolovymi kletkami (Biological Fundamentals and Perspectives of Therapy by Stem Cells), Moscow: Medpraktika, 2005.

    Google Scholar 

  14. Miller, D.C., Haberstroh, K.M., and Webster, T.J., PLGA Nanometer Surface Features Manipulate Fibronectin Interection for Improved Vascular Cell Adhesion, J. Biomed. Mater. Res., A, 2006, vol. 81, pp. 678–684.

    Google Scholar 

  15. Mosmann, T., Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays, J. Immunol. Meth., 1983, vol. 65, pp. 55–63.

    Article  CAS  Google Scholar 

  16. Tatarenko-Koz’mina, T.Yu., Poradovskaya, T.P., Kudinova, V.F., and Pavlova, T.E., Study of Mesenchymal Stromal Cells of Marrow-Predecessors of Osteoplasts on Biostable Composites, Sbornik nauchnykh rabot Sibirskogo gosudarstvennogo meditsinskogo universiteta “Estestvoznanie i gumanizm” (Collection of Scientific Papers of Siberian State Medical Univ. “Natural Science and Humanism”), Tomsk, 2005, vol. 2, part 2.

  17. Plokhinskii, N.A., Biometriya (Biometry), Moscow: MGU, 1970.

    Google Scholar 

  18. Akimov, A.G., About Regularities of Protection Oxide Layers in Metal (Alloy)-Medium Systems, Zashchita Metallov, 1986, vol. 22, no. 6, pp. 879–886.

    CAS  Google Scholar 

  19. Meisner, L.L., Sivokha, V.P., Lotkov, A.I., and Barmina, E.G., Corrosion Properties of Quasibinary Section of TiNi-TiAu Alloys in Biochemical Solutions, Fiz. Khim. Obrab. Mater., 2006, no. 1, pp. 78–84.

  20. Shabalovskaya, S.A., He, Tian., Andregg, J.W., et al., The Influence of Surface Oxides on the Distribution and Release of Nickel from Nitinol Wires, Biomaterials, 2009, vol. 30, no. 4, pp. 468–477.

    Article  CAS  Google Scholar 

  21. Anselme, K., Osteoblast Adhesion on Biomaterials, Biomaterials, 2000, no. 21, pp. 667–681.

  22. Eisenbarth, E., Linez, P., Biehl, V., et al., Cell Orientation and Cytoskeleton Organization on Ground Titanium Surfaces, Biomolecular Eng., 2002, vol. 19, nos. 2–6, pp. 233–237.

    Article  CAS  Google Scholar 

  23. Pareta, R.A., Reising, A.B., Miller, et al., An Understanding of Enhanced Osteoblast Adhesion on Various Nanostructured Polymeric and Metallic Materials Prepared by Ionic Plasma Deposition, J. Biomed. Mater. Res., A, 2010, vol. 92, no. 3, pp. 1190–1201.

    Google Scholar 

  24. Marleta, J., Uptonac, J., Langerbo, R., and Vacantica, J.P., Transplantation of Cells in Matrices for Tissue Regeneration, Advan. Drag Delivery Rev., 1998, no. 3, pp. 165–182.

  25. Miller, D.C., Haberstroh, R.M., and Webster, T.J., Mechanism(s) of Increased Vascular Cell Adhesion on Nanostructured Poly(lactic-co-glycolic acid) Films, J. Biomed. Mater. Res., A, 2005, vol. 73, pp. 476–484.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Lotkov.

Additional information

Original Russian Text © A.I. Lotkov, S.G. Psakh’e, L.L. Meisner, V.A. Matveeva, L.V. Artem’eva, S.N. Meisner, A.L. Matveev, 2011, published in Perspektivnye Materialy, 2011, No. 4, pp. 42–53.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lotkov, A.I., Psakh’e, S.G., Meisner, L.L. et al. The effect of chemical composition and roughness of titanium nickelide surface on proliferative properties of mesenchymal stem cells. Inorg. Mater. Appl. Res. 3, 135–144 (2012). https://doi.org/10.1134/S2075113312020116

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113312020116

Keywords

Navigation