Skip to main content
Log in

Functional State of Mesenchymal Stem Cells upon Exposure to Bioactive Coatings on Titanium Alloys

  • Translated from Kletochnye Tekhnologii v Biologii i Meditsine (Cell Technologies in Biology and Medicine)
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

Bioactive coatings on implants affect osteogenic differentiation of mesenchymal stem cells (MSC). We studied the morphofunctional state of bone marrow MSC cultured on the surface of calcium phosphate coatings on titanium formed by plasma electrolytic oxidation (PEO). The biocompatible properties of the coatings manifested in the absence of the cytotoxic effect on cells. High expression of receptors (CD90, CD29, and CD106), enhanced synthesis of osteocalcin and osteopontin, and changes in surface architectonics of MSC adherent to the samples confirmed osteoinductive properties of the calcium phosphate PEO coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuznetsova DS, Timashev PS, Bagratashvili VN, Zagainova EV. Scaffold- and Cell System-Based Bone Grafts in Tissue Engineering (Review). Sovremen. Tekhnol. Med. 2014;6(4):201-212. Russian.

    Google Scholar 

  2. Litvinova LS, Shupletsova VV, Yurova KA, Khaziakhmatova OG, Todosenko NM, Khlusova MY, Slepchenko GB, Cherempey EG, Sharkeev YP, Komarova EG, Sedelnikova MB, Malashchenko VV, Melashchenko ES, Khlusov IA. Cell-IQ visualization of motility, cell mass, and osteogenic differentiation of multipotent mesenchymal stromal cells cultured with relief calcium phosphate coating. Dokl. Biochem. Biophys. 2017;476(1):310-315. https://doi.org/10.1134/S1607672917050076

    Article  CAS  PubMed  Google Scholar 

  3. Medkov MA, Grischenko DN, Rudnev VS, Shulepin IV, Cherepovskiy AS, Ponomarenko AI, Dyuizen IV. Osteoreparation features using biomaterials based on hydroxyapatite and strontium-substituted hydroxyapatite. Tikhookean. Med. Zh. 2015;(4):48-52. Russian.

    Google Scholar 

  4. Assi R, Foster TR, He H, Stamati K, Bai H, Huang Y, Hyder F, Rothman D, Shu C, Homer-Vanniasinkam S, Cheema U, Dardik A. Delivery of mesenchymal stem cells in biomimetic engineered scaffolds promotes healing of diabetic ulcers. Regen. Med. 2016;11(3):245-260.

    Article  CAS  Google Scholar 

  5. Birmingham E, Niebur GL, McHugh PE, Shaw G, Barry FP, McNamara LM. Osteogenic differentiation of mesenchymal stem cells is regulated by osteocyte and osteoblast cells in a simplified bone niche. Eur. Cell. Mater. 2012;23:13-27.

    Article  CAS  Google Scholar 

  6. Castillo Diaz LA, Elsawy M, Saiani A, Gough JE, Miller AF. Osteogenic differentiation of human mesenchymal stem cells promotes mineralization within a biodegradable peptide hydrogel. J. Tissue Eng. 2016;7. https://doi.org/10.1177/2041731416649789

  7. Ceylan H, Kocabey S, Unal Gulsuner H, Balcik OS, Guler MO, Tekinay AB. Bone-like mineral nucleating peptide nanofibers induce differentiation of human mesenchymal stem cells into mature osteoblasts. Biomacromolecules. 2014;15(7):2407-2418.

    Article  CAS  Google Scholar 

  8. Donnelly H, Smith CA, Sweeten PE, Gadegaard N, Meek RD, D’Este M, Mata A, Eglin D, Dalby MJ. Bone and cartilage differentiation of a single stem cell population driven by material interface. J. Tissue Eng. 2017;8. https://doi.org/10.1177/2041731417705615

  9. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop Dj, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315-317.

    Article  CAS  Google Scholar 

  10. Farshdousti Hagh M, Noruzinia M, Mortazavi Y, Soleimani M, Kaviani S, Abroun S, Dehghani Fard A, Mahmoodinia M. Different methylation patterns of RUNX2, OSX, DLX5 and BSP in osteoblastic differentiation of mesenchymal stem cells. Cell J. 2015;17(1):71-82.

    PubMed  PubMed Central  Google Scholar 

  11. Fotakis G, Timbrell JA. In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol. Lett. 2005;160(2):171-177.

    Article  Google Scholar 

  12. Hemming S, Cakouros D, Vandyke K, Davis MJ, Zannettino AC, Gronthos S. Identification of novel EZH2 targets regulating osteogenic differentiation in mesenchymal stem cells. Stem Cells Dev. 2016;25(12):909-921.

    Article  CAS  Google Scholar 

  13. Jung O, Hanken H, Smeets R, Hartjen P, Friedrich RE, Schwab B, Gröbe A, Heiland M, Al-Dam A, Eichhorn W, Sehner S, Kolk A, Wöltje M, Stein JM. Osteogenic differentiation of mesenchymal stem cells in fibrin-hydroxyapatite matrix in a 3-dimensional mesh scaffold. In Vivo. 2014;28(4):477-482.

    CAS  PubMed  Google Scholar 

  14. Kim D, Choi B, Song J, Kim S, Oh S, Jin EH, Kang SS, Jin EJ. TiO2 nanotube stimulate chondrogenic differentiation of limb mesenchymal cells by modulating focal activity. Exp. Mol. Med. 2011;43(8):455-461.

    Article  CAS  Google Scholar 

  15. Kulkarni M, Mazare A, Gongadze E, Perutkova Š, Kralj-Iglič V, Milošev I, Schmuki P, Iglič A, Mozetič M. Titanium nanostructures for biomedical applications. Nanotechnology. 2015;26(6). ID 062002. https://doi.org/10.1088/0957-4484/26/6/062002

  16. Kumar A, Biswas K, Basu B. Hydroxyapatite-titanium bulk composites for bone tissue engineering applications. J. Biomed. Mater. Res. A. 2015;103(2):791-806.

    Article  Google Scholar 

  17. Li B, Hu Y, Zhao Y, Cheng M, Qin H, Cheng T, Wang Q, Peng X, Zhang X. Curcumin attenuates titanium particle-induced inflammation by regulating macrophage polarization in vitro and in vivo. Front. Immunol. 2017;8. ID 55. https://doi.org/10.3389/fimmu.2017.00055

  18. Liu YC, Kao YT, Huang WK, Lin KY, Wu SC, Hsu SC, Schuyler SC, Li LY, Leigh Lu F, Lu J. CCL5/RANTES is important for inducing osteogenesis of human mesenchymal stem cells and is regulated by dexamethasone. Biosci. Trends. 2014;8(3):138-143.

    Article  Google Scholar 

  19. Ma L, Aijima R, Hoshino Y, Yamaza H, Tomoda E, Tanaka Y, Sonoda S, Song G, Zhao W, Nonaka K, Shi S, Yamaza T. Transplantation of mesenchymal stem cells ameliorates secondary osteoporosis through interleukin-17-impaired functions of recipient bone marrow mesenchymal stem cells in MRL/lpr mice. Stem Cell Res. Ther. 2015;6:104.

    Article  Google Scholar 

  20. Montanaro L, Testoni F, Poggi A, Visai L, Speziale P, Arciola CR. Emerging pathogenetic mechanisms of the implant-related osteomyelitis by Staphylococcus aureus. Int. J. Artif. Organs. 2011;34(9):781-788.

    Article  CAS  Google Scholar 

  21. Plemel JR, Caprariello AV, Keough M.B, Henry TJ, Tsutsui S, Chu TH, Schenk GJ, Klaver R, Yong VW, Stys PK. Unique spectral signatures of the nucleic acid dye acridine orange can distinguish cell death by apoptosis and necroptosis. J. Cell Biol. 2017;216(4):1163-1181.

    Article  CAS  Google Scholar 

  22. Rashkow JT, Talukdar Y, Lalwani G, Sitharaman B. Interactions of 1D- and 2D-layered inorganic nanoparticles with fibroblasts and human mesenchymal stem cells. Nanomedicine (Lond). 2015;10(11):1693-1706.

    Article  CAS  Google Scholar 

  23. Robey P. “Mesenchymal stem cells”: fact or fiction, and implications in their therapeutic use. F1000Res. 2017;6. pii: F1000 Faculty Rev-524. https://doi.org/10.12688/f1000research.10955.1

  24. Schlundt C, Schell H, Goodman S.B, Vunjak-Novakovic G, Duda GN, Schmidt-Bleek K. Immune modulation as a therapeutic strategy in bone regeneration. J. Exp. Orthop. 2015;2(1). https://doi.org/10.1186/s40634-014-0017-6

  25. St Pierre CA, Chan M, Iwakura Y, Ayers DC, Kurt-Jones EA, Finberg RW. Periprosthetic osteolysis: characterizing the innate immune response to titanium wear-particles. J. Orthop. Res. 2010;28(11):1418-1424.

    Article  CAS  Google Scholar 

  26. Tomchuck SL, Zwezdaryk KJ, Coffelt SB, Waterman RS, Danka ES, Scandurro AB. Toll-like receptors on human mesenchymal stem cells drive their migration and immunomodulating responses. Stem Cells. 2012;26(1):99-107.

    Article  Google Scholar 

  27. Tsimbouri PM, Murawski K, Hamilton G, Herzyk P, Oreffo RO, Gadegaard N, Dalby MJ. A genomics approach in determining nanotopographical effects on MSC phenotype. Biomaterials. 2013;34(9):2177-2184.

    Article  CAS  Google Scholar 

  28. Ullah I, Subbarao RB, Rho GJ. Human mesenchymal stem cells — current trends and future prospective. Biosci. Rep. 2015;35(2):28-42.

    Article  Google Scholar 

  29. Wetzig A, Alaiya A, Al-Alwan M, Pradez CB, Pulicat MS, Al-Mazrou A, Shinwari Z, Sleiman GM, Ghebeh H, Al-Humaidan H, Gaafar A, Kanaan I, Adra C. Differential marker expression by cultures rich in mesenchymal stem cells. BMC Cell Biol. 2013;14. ID 54. https://doi.org/10.1186/1471-2121-14-54

  30. Yang ZX, Han ZB, Ji YR, Wang YW, Liang L, Chi Y, Yang SG, Li LN, Luo WF, Li JP, Chen DD, Du WJ, Cao XC, Zhuo GS, Wang T, Han ZC. CD106 identifies a subpopulation of mesenchymal stem cells with unique immunomodulatory properties. PLoS One. 2013;8(3). ID e59354. https://doi.org/10.1371/journal.pone.0059354

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Plekhova.

Additional information

Translated from Kletochnye Tekhnologii v Biologii i Meditsine, No. 1, pp. 30-40, January, 2020

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plekhova, N.G., Lyapun, I.N., Drobot, E.I. et al. Functional State of Mesenchymal Stem Cells upon Exposure to Bioactive Coatings on Titanium Alloys. Bull Exp Biol Med 169, 147–156 (2020). https://doi.org/10.1007/s10517-020-04841-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-020-04841-6

Key Words

Navigation