Skip to main content
Log in

Effect of Ti6Al4V surface morphology on the osteogenic differentiation of human embryonic stem cells

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Ti6Al4V alloys usually need to undergo some kind of surface treatment to enable good bone growth and implant integration. In this work, three treatments that modify the titanium alloy surface were studied with the aim of promoting osteogenic differentiation of human-embryonic-stem-cell-derived mesenchymal progenitors (hESC-MPs). The surface treatments used were mechanical polishing and electropolishing for 4 or 12 min in an H2SO4/HF/glycerine solution. The samples were characterised by atomic force microscopy, profilometry, X-ray photoelectron spectroscopy, and wettability. Samples were seeded with hESC-MPs in osteogenic media, and the cell number and alkaline phosphatase activity were measured. The electropolishing surface treatments influenced the nanometric morphology and wettability. However, the electropolished surfaces contributed in the same way as the mechanically polished surface to osteogenic differentiation, indicating that differentiation was strongly influenced by microroughness, which did not differ among the treatments used in the present work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. C.A. Huang, F. Hsu, and C.H. Yu: Electropolishing behaviour of pure titanium in sulphuric acid–ethanol electrolytes with an addition of water. Corros. Sci. 53(2), 589 (2011).

    CAS  Google Scholar 

  2. E.L. Van, I. Rodriguez, H.Y. Low, N. Elmouelhi, B. Lowenhaupt, S. Natarajan, C.T. Lim, R. Prajapati, M. Vyakarnam, and K. Cooper: Review: Micro- and nanostructured surface engineering for biomedical applications. J. Mater. Res. 28(2), 165 (2013).

    Google Scholar 

  3. F. Nazneen, P. Galvin, D.W.M. Arrigan, M. Thompson, P. Benvenuto, and G. Herzog: Electropolishing of medical-grade stainless steel in preparation for surface nano-texturing. J. Solid State Electrochem. 16, 1389 (2012).

    CAS  Google Scholar 

  4. C. Bettinger, Z. Zhang, S. Gerecht, J.T. Borenstein, and R. Langer: Enhancement of in vitro capillary tube formation by substrate nanotopography. Adv. Mater. 20, 99 (2008).

    CAS  Google Scholar 

  5. J. Lu, M. Rao, N. MacDonald, D. Khang, and T. Webster: Improved endothelial cell adhesion and proliferation on patterned titanium surfaces with rationally designed, micrometer to nanometer features. Acta Biomater. 4, 192 (2008).

    CAS  Google Scholar 

  6. S. Drensler, L. Neelakantan, C. Somsen, G. Eggeler, and A.H. Hassel: Electropolishing of a nickel–titanium–copper shape memory alloy in methanolic sulfuric acid. Electrochem. Solid-State Lett. 12, C1 (2009).

    CAS  Google Scholar 

  7. Y. Hao, S. Li, X. Han, Y. Hao, and H. Ai: Effects of the surface characteristics of nanoporous titanium oxide films on Ti–24Nb–4Zr–8Sn alloy on the initial adhesion of osteoblast-like MG-63 cells. Exp. Ther. Med. 6, 241 (2013).

    CAS  Google Scholar 

  8. K-H. Kim, T-Y. Kwon, S-Y. Kim, I-K. Kang, S. Kim, Y. Yang, and J.L. Ong: Preparation and characterization of anodized titanium surface and their effect on osteoblast responses. J. Oral Implantol. 32, 8 (2006).

    Google Scholar 

  9. E.K. Cydzik, K. Kowalski, and A. Kaczmarek: Anodic and nanostructural layers on titanium and its alloys for medical applications. Inz. Mater. 5, 425 (2009).

    Google Scholar 

  10. S. Karmarker, W. Yu, and H-M. Kyung: Effect of surface anodization on stability of orthodontic microimplant. Korean J. Orthod 42, 4 (2012).

    Google Scholar 

  11. J. Xie and B.L. Luan: Microstructural and electrochemical characterization of hydroxyapatite-coated Ti6Al4V alloy for medical implants. J. Mater. Res. 23(3), 768 (2008).

    CAS  Google Scholar 

  12. W.J. Landis and F.H. Silver: Mineral deposition in the extracellular matrices of vertebrate tissues: Identification of possible apatite nucleation sites on type I collagen. Cells Tissues Organs 189, 20 (2009).

    CAS  Google Scholar 

  13. A.P. Tomsia, J.S. Lee, U.G. Wegst, and E. Saiz: Nanotechnology for dental implants. Int. J. Oral Maxillofac. Implants 28, e535 (2013).

    Google Scholar 

  14. C. Gao, J. Zhuang, P. Li, C. Shuai, and S. Peng: Preparation of micro/nanometer-sized porous surface structure of calcium phosphate scaffolds and the influence on biocompatibility. J. Mater. Res. 29(10), 1144 (2014).

    CAS  Google Scholar 

  15. E. Martinez, E. Engel, J.A. Planell, and J. Samitier: Effects of artificial micro- and nano-structured surfaces on cell behaviour. Ann. Anat. 191, 126 (2009).

    CAS  Google Scholar 

  16. M. Lord, M. Foss, and F. Besenbacher: Influence of nanoscale surface topography on protein adsorption and cellular response. Nano Today 5, 66 (2010).

    CAS  Google Scholar 

  17. P. Wang, L. Zhao, J. Liu, M.D. Weir, X. Zhou, and H.H.K. Xu: Bone tissue engineering via nanostructured calcium phosphate biomaterials and stem cells. Bone Res. 2, 1 (2014).

    Google Scholar 

  18. L. Zhao, L. Liu, Z. Wu, Y. Zhang, and P.K. Chu: Effects of micropitted/nanotubular titania topographies on bone mesenchymal stem cell osteogenic differentiation. Biomaterials 33, 2629 (2012).

    CAS  Google Scholar 

  19. S. Liao, L.T. Nguyen, M. Ngiam, C. Wang, Z. Cheng, C.K. Chan, and S. Ramakrishna: Biomimetic nanocomposites to control osteogenic differentiation of human mesenchymal stem cells. Adv. Healthcare Mater. 3, 737 (2014).

    CAS  Google Scholar 

  20. J. Lock and H. Liu: Nanomaterials enhance osteogenic differentiation of human mesenchymal stem cells similar to a short peptide of BMP-7. Int. J. Nanomed. 6, 2769 (2011).

    CAS  Google Scholar 

  21. A. Polini, D. Pisignano, M. Parodi, R. Quarto, and S. Scaglione: Osteoinduction of human mesenchymal stem cells by bioactive composite scaffolds without supplemental osteogenic growth factors. PLoS One 6, e26211 (2011).

    CAS  Google Scholar 

  22. P. Koegler, A. Clayton, H. Thissen, G.N. Santos, and P. Kingshott: The influence of nanostructured materials on biointerfacial interactions. Adv. Drug Delivery Rev. 64, 1820 (2012).

    CAS  Google Scholar 

  23. J.C. Fricain, S. Schlaubitz, C. Le Visage, I. Arnault, S.M. Derkaoui, R. Siadous, S. Catros, C. Lalande, R. Bareille, M. Renard, T. Fabre, S. Cornet, M. Durand, A. Léonard, N. Sahraoui, D. Letourneur, and J. Amédéd: A nano-hydroxyapatite–pullulan/dextran polysaccharide composite macroporous material for bone tissue engineering. Biomaterials 34, 2947 (2013).

    CAS  Google Scholar 

  24. H. Nikukar, S. Reid, P.M. Tsimbouri, M.O. Riehle, A.S. Curtis, and M.J. Dalby: Osteogenesis of mesenchymal stem cells by nanoscale mechanotransduction. ACS Nano 7, 2758 (2013).

    CAS  Google Scholar 

  25. G. Mendonca, D.B. Mendonca, L.G. Simoes, A.L. Araújo, E.R. Leite, W.R. Duarte, F.J. Aragão, and L.F. Cooper: The effects of implant surface nanoscale features on osteoblast-specific gene expression. Biomaterials 30, 4053 (2009).

    CAS  Google Scholar 

  26. F. Marini, E. Luzi, S. Fabbri, S. Ciuffi, S. Sorace, I. Tognarini, G. Galli, R. Zonefrati, F. Sbaiz, and M.L. Brandi: Osteogenic differentiation of adipose tissue-derived mesenchymal stem cells on nanostructured Ti6Al4V and Ti13Nb13Zr. Clin. Cases Miner. Bone Metab. 12, 224 (2015).

    Google Scholar 

  27. I. Tognarini, S. Sorace, R. Zonefrati, G. Galli, A. Gozzini, S.S. Carbonell, G.D. Thyrion, A.M. Carossino, A. Tanini, C. Mavilia, C. Azzari, F. Sbaiz, A. Facchini, R. Capanna, and M.L. Brandi: In vitro differentiation of human mesenchymal stem cells on Ti6Al4V surfaces. Biomaterials 29, 809 (2008).

    CAS  Google Scholar 

  28. R.A. Gittens, R. Olivares-Navarrete, T. McLachlan, Y. Cai, S.L. Hyzy, J.M. Schneider, Z. Schwartz, H.K. Sandhage, and B.D. Boyn: Differential responses of osteoblast lineage cells to nanotopographically-modified, microroughened titanium–aluminium–vanadium alloy surfaces. Biomaterials 33, 8986 (2012).

    CAS  Google Scholar 

  29. P. Jiang, J. Liang, and C. Lin: Construction of micro-nano network structure on titanium surface for improving bioactivity. Appl. Surf. Sci. 280, 373 (2013).

    CAS  Google Scholar 

  30. D.D. Deligianni, N. Katsala, S. Ladas, D. Sotiropoulou, J. Amedee, and Y.F. Missirlis: Effect of surface roughness of the titanium alloy Ti–6A1–4V on human bone marrow cell response and on protein adsorption. Biomaterials 22, 1241 (2001).

    CAS  Google Scholar 

  31. X. Zhu, J. Chen, L. Scheideler, T. Altebaeumer, J. Geis-Gerstorfer, and D. Kern: Cellular reactions of osteoblasts to micron- and submicron-scale porous structures of titanium surfaces. Cells Tissues Organs 178, 13 (2004).

    CAS  Google Scholar 

  32. K. Takahashi and S. Yamanaka: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663 (2006).

    CAS  Google Scholar 

  33. L. Chou, J.D. Firth, V.J. Uitto, and D.M. Brunette: Substratum surface topography alters cell shape and regulates fibronectin mRNA level, mRNA stability, secretion and assembly in human fibroblasts. J. Cell Sci. 108, 1563 (1995).

    CAS  Google Scholar 

  34. I. Bab, L. Passi-Even, D. Gazit, E. Sekeles, B.A. Ashton, N. Peylan-Ramu, I. Ziv, and M. Uimansky: Osteogenesis in in vivo diffusion chamber cultures of human marrow cells. Bone Miner. 4, 373 (1988).

    CAS  Google Scholar 

  35. M.F. Pittenger, A.M. Mackay, S.C. Beck, R.K. Jaiswal, R. Douglas, J.D. Mosca, M.A. Moorman, D.W. Simonetti, S. Craiq, and D.R. Marshak: Multilineage potential of adult human mesenchymal stem cells. Science 284, 143 (1999).

    CAS  Google Scholar 

  36. A. Mamalis and S. Silvestros: Modified titanium surfaces alter osteogenic differentiation: A comparative microarray-based analysis of human mesenchymal cell response to commercial titanium surfaces. J. Oral Implantol. 39, 591 (2013).

    Google Scholar 

  37. R. Olivares-Navarrete, S.L. Hyzy, J.H. Park, G. Dunn, D. Haithcock, C. Wasilewski, B. Boyan, and Z. Schwartz: Mediation of osteogenic differentiation of human mesenchymal stem cells on titanium surfaces by a Wnt-integrin feedback loop. Biomaterials 32, 6399 (2011).

    CAS  Google Scholar 

  38. G. Zhao, A.L. Raines, M. Wieland, Z. Schwartz, and B.D. Boyan: Requirement for both micron- and submicron scale structure for synergistic responses of osteoblasts to substrate surface energy and topography. Biomaterials 28, 2821 (2007).

    CAS  Google Scholar 

  39. Y. Yang, J. Tian, L. Deng, and J.L. Ong: Morphological behaviour of osteoblast-like cells on surface modified titanium in vitro. Biomaterials 23, 1383 (2002).

    CAS  Google Scholar 

  40. L.M. Antonini: Superfícies nanoestruturadas de titânio e tratamento superficial com filmes diamond like carbon (DLC). Master’s Dissertation in Mining Engineering, Metallurgy and Materials, School of Engineering, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, 1–125 (2012).

    Google Scholar 

  41. G.D. Sulka and K.G. Parkola: Anodising potential influence on well-ordered nanostructures formed by anodisation of aluminium in sulphuric acid. Thin Solid Films 515, 338 (2006).

    CAS  Google Scholar 

  42. Y. Kutes, V. Vyas, and B.D. Huey: Nano and micro scale analysis of dentin with in vitro and high speed atomic force microscopy. J. Mater. Res. 28(17), 2000 (2013).

    Google Scholar 

  43. J. O’Brien, I. Wilson, T. Orton, and F. Pognan: Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur. J. Biochem. 267(17), 5421 (2000).

    Google Scholar 

  44. M. Laitinen, T. Halttunen, L. Jortikka, O. Teronen, T. Sorsa, and T.S. Lindholm: The role of transforming growth factor-beta on retarded osteoblastic differentiation in vitro. Life Sci. 64, 847 (1999).

    CAS  Google Scholar 

  45. J.R. Farley, J.E. Wergedal, and D.J. Bavlink: Fluoride directly stimulates proliferation and alkaline phosphatase activity of bone-forming cells. Science 222(4621), 330 (1983).

    CAS  Google Scholar 

  46. C.D. Hoemann, H. El-Gabalawy, and M.D. McKee: In vitro osteogenesis assays: Influence of the primary cell source on alkaline phosphatase activity and mineralization. Pathol. Biol. 57(4), 318 (2009).

    CAS  Google Scholar 

  47. P.S. Albu, A. Ghicov, S. Aldabergenova, P. Drechsel, D. LeClere, G.E. Thompson, J.M. Macak, and P. Schmuki: Formation of double-walled TiO2 nanotubes and robust anatase membranes. Adv. Mater. 20, 4135 (2008).

    CAS  Google Scholar 

  48. A. Bismarck, R. Tahhan, J. Springer, A. Schulz, T.M. Klapötke, H. Zell, and W. Michaeli: Influence of fluorination on the properties of carbon fibres. J. Fluorine Chem. 84, 127 (1997).

    CAS  Google Scholar 

  49. K. Cai, J. Bossert, and K.D. Jandt: Does the nanometre scale topography of titanium influence protein adsorption and cell proliferation?Colloids Surf., B 49, 136 (2006).

    CAS  Google Scholar 

  50. M. Winkelmann, J. Gold, R. Hauert, B. Kasemo, D.M. Spencer, D.M. Brunette, and M. Textor: Chemically patterned, metal oxide based surfaces produced by photolithographic techniques for studying protein-and cell-surfaces interactions I: Microfabrication and surface characterization. Biomaterials 24, 1133 (2003).

    CAS  Google Scholar 

  51. P.G. Rouxhet and M.J. Genet: XPS analysis of bio-organic systems. Surf. Interface Anal. 43(12), 1453 (2011).

    CAS  Google Scholar 

  52. D-Z. Cui, K-D. Park, K-K. Lee, Y-S. Jung, B-A. Lee, Y-J. Lee, O-S. Kim, H-J. Chung, and Y-J. Kim: Surface characteristics and osteoblastic cell response to titanium–8tantalum–3neobium alloy. Appl. Surf. Sci. 262, 107 (2012).

    CAS  Google Scholar 

  53. C. Lin and C.C. Hu: Electropolishing of 304 stainless steel: Surface roughness control using experimental design strategies and a summarized electropolishing model. Electrochim. Acta 53, 3356 (2008).

    CAS  Google Scholar 

  54. H-S. Kim, Y-J. Kim, J-H. Jang, and J-W. Park: Surface engineering of nanostructured titanium implants with bioactive ions. J. Dent. Res. 95, 558 (2016).

    CAS  Google Scholar 

  55. H.F. Li, Y.B. Wang, Y.F. Zheng, and J.P. Lin: Osteoblast response on Ti- and Zr-based bulk metallic glass surfaces after sand blasting modification. J. Biomed. Mater. Res., Part B 100, 1721 (2012).

    CAS  Google Scholar 

  56. D.B.S. Mendonça, P.A. Miguez, G. Mendonça, M. Yamauchi, F.J.L. Aragão, and L.F. Cooper: Titanium surface topography affects collagen biosynthesis of adherent cells. Bone 49, 463 (2011).

    Google Scholar 

  57. R. Olivares-Navarrete, S.L. Hyzy, M.E. Berg, J.M. Schneider, K. Hotchkiss, Z. Schwartz, and B.D. Boyan: Osteoblast lineage cells can discriminate microscale topographic features on titanium–aluminum–vanadium surfaces. Ann. Biomed. Eng. 42, 2551 (2014).

    Google Scholar 

  58. M. Vandrovcová and L. Bačáková: Adhesion, growth and differentiation of osteoblasts on surface-modified materials developed for bone implants. Physiol. Res. 60, 403 (2011).

    Google Scholar 

  59. W.E. Yang and H.H. Huang: Improving the biocompatibility of titanium surface through formation of a TiO2 nano-mesh layer. Thin Solid Films 518, 7545 (2010).

    CAS  Google Scholar 

  60. X. Liu, M. Li, Y. Zhu, K.W.K. Yeung, P.K. Chu, and S. Wu: The modulation of stem cell behaviors by functionalized nanoceramic coatings on Ti-based implants. Bioact. Mater. 1, 65 (2016).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The present work was carried out with the support of CAPES and CNPq, Brazilian Government entities focused on the formation of human resources. We thank Julie Marshall from the University of Sheffield for technical services relating to the cell culture work. The authors also thank INPE for the XPS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Marasca Antonini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonini, L.M., Kothe, V., Reilly, G.C. et al. Effect of Ti6Al4V surface morphology on the osteogenic differentiation of human embryonic stem cells. Journal of Materials Research 32, 3811–3821 (2017). https://doi.org/10.1557/jmr.2017.392

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.392

Navigation