Skip to main content
Log in

Fault-Tolerant Control Design for Multirotor UAVs Formation Flight

  • Published:
Gyroscopy and Navigation Aims and scope Submit manuscript

Abstract—This paper proposes the use of the Gbest-Guided Artificial Bee Colony (GABC) algorithm to solve an online optimization problem for the leaderless distributed formation control of hexarotor Unmanned Aerial Vehicles (UAVs). The GABC is employed to optimize a cost function for each agent while ensuring the convergence of the fleet to the target position and averting both obstacles and collisions with other UAVs. The GABC algorithm has been shown to be competitive with some other conventional biological-inspired algorithms such as the Particle Swarm Optimization (PSO). Fault-Tolerant Control (FTC) methods are presented and tested on several scenarios, particularly we considered the cases of loss of agents and actuator faults in the fleet. Results show the success of the proposed FTC methods to minimize the faults effect on the formation final goal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

Notes

  1. The video of the simulation is shown at: https://youtu.be/sMTEfGGa58k

REFERENCES

  1. Shakhatreh, H., Sawalmeh, A., Al-Fuqaha, A., Dou, Z., Almaita, E., Khalil, I., Othman, N., Khreishah, A., and Guizani, M., Unmanned Aerial Vehicles (UAVs): A survey on civil applications and key research challenges, IEEE Access 7, 2019, pp. 48572−48634.

    Article  Google Scholar 

  2. Sreenath, K. and Kumar, V., Dynamics, control and planning for cooperative manipulation of payloads suspended by cables from multiple quadrotor robots, in Robotics: Science and Systems, Berlin, 2013.

    Google Scholar 

  3. Franchi, A., Secchi, C., Ryll, M., Bulthoff, H., and Giordano, P., Shared control: Balancing autonomy and human assistance with a group of quadrotor UAVs, IEEE Robot. Autom. Mag., 2012, vol. 19, no. 3, pp. 57–68.

    Article  Google Scholar 

  4. Ritz, R. and D’Andrea, R., Carrying a flexible payload with multiple flying vehicles, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Tokyo, Japan, 3-7 November 2013, pp. 3465–3471.

  5. Jiang, Q. and Kumar, V., The inverse kinematics of cooperative transport with multiple aerial robots, IEEE Trans. Robot., 2013, vol. 29, no. 1, pp. 136–145.

    Article  Google Scholar 

  6. Kushleyev, A., Kumar, V., and Mellinger, D., Towards a swarm of agile micro quadrotors, Proc. Robot., Sci. Syst., Sydney, NSW, Australia, 2012.

  7. Michael, N., Fink, J., and Kumar, V., 2009, Cooperative manipulation and transportation with aerial robots, Proc. Robot., Sci. Syst., Seattle, WA, USA, 2009.

    Book  Google Scholar 

  8. Dames, P. and Kumar, V., Autonomous localization of an unknown number of targets without data association using teams of mobile sensors, IEEE Trans. Autom. Sci. Eng., 2015, vol. 12, no. 3, pp. 850–864.

    Article  Google Scholar 

  9. Saska, M. et al., Autonomous deployment of swarms of micro-aerial vehicles in cooperative surveillance, Proc. Int. Conf. Unmanned Aircraft Syst. (ICUAS), Orlando, FL, USA, 27-30 May 2014, pp. 584–595.

  10. Hou, Z. and Fantoni, I., Interactive leader–follower consensus of multiple quadrotors based on composite nonlinear feedback control, IEEE Transactions on Control Systems Technology, 2018, vol. 26, no. 5, pp. 1732–1743.

    Article  Google Scholar 

  11. Vasarheyli, G., Viragh, Cs., Somorjai, G., Tarcai, N., Szorenyi, T., Nepusz, T., and Viscek, T., Outdoor flocking and formation flight with autonomous aerial robots, Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14−18 September 2014.

  12. Scollig, A., Augugliaro, F., Lupashin, S., and D’Andrea, R., Synchronizing the motion of a quadcopter to music, IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, May 3-8 2010, pp. 3355−3360.

  13. Kushleyev, A., Mellinger, D., Powers, C., and Kumar, V., Towards a swarm of agile micro quadrotors, Autonomous Robots, 2013, vol. 35, no. 4, pp. 287–300.

    Article  Google Scholar 

  14. Reynolds, C., Flocks, herds, and schools: A distributed behavioral model, Proc. of the 14th Annual Conference on Computer Graphics and Interactive Techniques, 1987, pp. 25–34.

  15. Olfati-Saber, R., Flocking for multi-agent dynamic systems: algorithms and theory, IEEE Transactions on Automatic Control, 2007, vol. 51, pp. 863–868.

    MathSciNet  Google Scholar 

  16. Antonelli, G., Arrichiello, F., and Chiaverini, S., Flocking for multirobot systems via the nullspace based behavioral control, Swarm Intelligence, 2010, vol. 4, no. 37.

  17. Bellingham, J., Tillerson, M., Alighanbari, M., and How, J., Cooperative path planning for multiple UAVs in dynamic and uncertain environments, Proc. IEEE Conference on Decision and Control, Las Vegas, NV, USA, 2002.

  18. Richards, A. and How, J., Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Proc. IEEE American Control Conference, Anchorage, AK, USA, 2002.

  19. Tanner, H., Jadbabaie, A., and Pappas, G., Flocking in fixed and switching networks, IEEE Transactions on Automatic Control, 2007, vol. 52, no. 5, pp. 863–868.

    Article  MathSciNet  Google Scholar 

  20. Bakule, L., Decentralized control: An overview, Annual Reviews in Control, 2008, vol. 32, no. 1, pp. 87−98.

    Article  Google Scholar 

  21. Jovanovic, M., Modeling, analysis, and control of spatially distributed systems, PhD Thesis, University of California, Santa Barbara, 2004.

  22. Brunet, L., Consensus-based auction approaches for decentralized task assignment, AIAA Guidance, Navigation and Control Conference and Exhibit, Honolulu, Hawaii, 2008.

    Book  Google Scholar 

  23. Quin, J., and Yu, C., Cluster consensus control of generic linear multi-agent systems under directed topology with acyclic partition, Automatica, 2013, vol. 49, no. 9, pp. 2898–2905.

    Article  MathSciNet  Google Scholar 

  24. Belkadi, A., Ciarletta, L., and Theilliol, D., UAVs fleet control design using distributed particle swarm optimization: A leaderless approach, International Conference on Unmanned Aircraft Systems (ICUAS), Arlington, VA, USA, 2016.

  25. Belkadi, A., Abaunza, H., Ciarletta, L., Castillo, P., and Theilliol, D., Distributed path planning for controlling a fleet of UAVs: Application to a team of quadrotors, IFAC-PapersOnline, 2017, vol. 50, no. 1, pp. 15983–15989.

    Article  Google Scholar 

  26. Abdmouleh, Z., Gastli, A., Ben-Brahim, L., Haouari, M., and Al-Emadi, N., Review of optimization techniques applied for the integration of distributed generation from renewable energy sources, Renewable Energy, 2017, vol. 113, pp. 266–280.

    Article  Google Scholar 

  27. Karaboga, D. and Basturk, B., Artificial Bee Colony (ABC) optimization algorithm for solving constrained optimization problems, Foundations of Fuzzy Logic and Soft Computing, Berlin: Springer-Verlag, 2007, pp. 789–798.

    MATH  Google Scholar 

  28. Bhattacharjee, P., Rakshit, P., Goswami, I., Konar, A., and Nagar, A., Muti-robot path-planning using artificial bee colony optimization algorithm, Proc. World Congress on Nature and Biologically Inspired Computing, Salamanca, Spain, 2011.

  29. Soyinka, O. and Duan, H., Satellite formation keeping via chaotic artificial bee colony, Aircr. Eng. Aerosp. Technol., 2017, vol. 89, no. 2, pp. 246–256.

    Article  Google Scholar 

  30. Zhou, B., Wang, W., and Ye, H., Cooperative control for consensus of multi-agent systems with actuator faults, Computers & Electrical Engineering, 2014, vol. 40, no. 7, pp. 2154–2166.

    Article  Google Scholar 

  31. Saska, M., Krajnik., T., Vonasek, V., Kasl, Z., Spurny, V., and Preucil, L., Fault-tolerant formation driving mechanism designed for heterogeneous MAVs-UGVs groups, Journal of Intelligent & Robotic Systems, 2014, vol. 73, no. 1, pp. 603–622.

    Article  Google Scholar 

  32. Belkadi, A., Conception de commande tolerante aux defauts pour les systemes multi-agents: application au vol en formation d’une flotte de vehicules autonomes aeriens, Ph.D. dissertation, University of Lorraine, France, 2017.

  33. Diestel, R., Graph Theory. Graduate Texts in Mathematics, Heidelberg: SpringerVerlag, 2005, third edition.

    Google Scholar 

  34. Sanahuja, G., Castillo, P., and Sanchez, A., Stabilization of n integrators in cascade with bounded input with experimental application to a VTOL laboratory system, International Journal of Robust and Nonlinear Control, 2010, vol. 20, no. 10, pp. 1129–1139.

    Article  MathSciNet  Google Scholar 

  35. Lalitha, M., Reddy, N., and Reddy, V., Optimal DG placement for maximum loss reduction in radial distribution system using ABC algorithm, Int. J. Rev. Comput, 2010, vol. 3, pp. 44–52.

    Google Scholar 

  36. Zhu, G. and Knowg, S., Gbest-guided artificial bee colony algorithm for numerical function optimization, Applied Mathematics and Computation, 2010, vol. 217, no. 7, pp. 3166–3173.

    Article  MathSciNet  Google Scholar 

  37. Saied, M., Knaiber, M., Mazeh, H., Shraim, H., and Francis, C., BFA fuzzy logic based control allocation for fault-tolerant control of multirotor UAVs, The Aeronautical Journal, 2019, vol. 123, pp. 1356–1373.

    Article  Google Scholar 

  38. Mazeh, H., Saied, M., Shraim, H., and Francis, C., Fault-tolerant control of an hexarotor unmanned aerial vehicle applying outdoor tests and experiments. IFAC-PapersOnline, 2018, vol. 51, no. 22, pp. 312–317.

    Article  Google Scholar 

Download references

ACKNOWLEDGEMENTS

This work received support from the Lebanese University Research Support Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Slim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slim, M., Saied, M., Mazeh, H. et al. Fault-Tolerant Control Design for Multirotor UAVs Formation Flight. Gyroscopy Navig. 12, 166–177 (2021). https://doi.org/10.1134/S2075108721020061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075108721020061

Keywords:

Navigation