Skip to main content
Log in

In Situ Ti-Embedded SiC as Chemiresistive Nanosensor for Safety Monitoring of CO, CO2, NO, NO2: Molecular Modelling by Conceptual Density Functional Theory

  • STRUCTURE OF CHEMICAL COMPOUNDS, QUANTUM CHEMISTRY, SPECTROSCOPY
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The adsorption of four CO, CO2, NO, NO2 gas molecules in the atmosphere on titanium (Ti)‑doped monolayer SiC surface was investigated using the density functional theory (DFT) with equilibrium geometries optimized at the CAM-B3LYP/6-311+G(d, p) level of theory. The thermochemical, electric and magnetic properties data recommend that the adsorption of these gas molecules on Ti-embedded SiC sheet (SiC_sh) monolayer is more energetically desired than that on the pristine ones. Gas molecules of CO, CO2, NO, NO2 have been adsorbed on the Ti site of doped SiC monolayer through the formation of covalent bonds. Moreover, after the adsorption, the orientations of the gas molecules exhibited a tendency to orient in the inclined and parallel forms to monolayer SiC_sh. The DFT analysis explored that the monolayer SiC_sh with C and Ti-doped atoms possessing one satisfied valency increased the Van der Waal interactions between the gas molecules and the monolayer SiC_sh. Furthermore, the assumption of chemical adsorptions has been approved by the projected density of states (PDOS) and charge density difference plots. Charge density difference calculations also indicate that the electronic densities were mainly accumulated on the adsorbate of CO, CO2, NO, NO2 gas molecules. The results in this investigation can indicate the competence of transition metal doped silicon carbide nanosheet in sensor devices. The overall analysis showed that the adsorption strength of monolayer SiC_sh towards the chosen gas molecules follows the order: NO2 > CO2 > NO > CO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 4.
Fig. 5.
Fig. 5.
Fig. 6.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. J. Zhang, W. Wang, Russ. J. Phys. Chem. B 17, 293 (2023). https://doi.org/10.1134/S1990793123020343

    Article  CAS  Google Scholar 

  2. F. Mollaamin, M. Monajjemi, J. Bio- Tribo-Corros. 9, 47 (2023). https://doi.org/10.1007/s40735-023-00768-3

  3. M. M. Avilova, N. V. Zolotareva, and O. V. Popova, Russ. J. Phys. Chem. B 17, 329 (2023). https://doi.org/10.1134/S1990793123020203

    Article  CAS  Google Scholar 

  4. A. H. Davtyan, Z. O. Manukyan, S. D. Arsentev, et al., Russ. J. Phys. Chem. B 17, 336 (2023). https://doi.org/10.1134/S1990793123020239

    Article  CAS  Google Scholar 

  5. F. Mollaamin and M. Monajjemi, J. Cluster Sci. 34 (6), 1–18 (2023). https://doi.org/10.1007/s10876-023-02436-5

    Article  CAS  Google Scholar 

  6. O. N. Fedyaeva, A. V. Shishkin, and A. A. Vostrikov, Russ. J. Phys. Chem. B 16, 1285 (2022). https://doi.org/10.1134/S1990793122070053

    Article  CAS  Google Scholar 

  7. F. Mollaamin and M. Monajjemi, Mol. Simul. 49 (4), 365 (2023). https://doi.org/10.1080/08927022.2022.2159996

    Article  CAS  Google Scholar 

  8. M. Monajjemi, M. T. Baie, and F. Mollaamin, Russ. Chem. Bull. 59, 886 (2010). https://doi.org/10.1007/s11172-010-0181-5

    Article  CAS  Google Scholar 

  9. K. Bakhshi, F. Mollaamin, M. Monajjemi, J. Comput. Theor. Nanosci. 8, 763 (2011). https://doi.org/10.1166/jctn.2011.1750

    Article  CAS  Google Scholar 

  10. G. M. Khrapkovskii, I. V. Aristov, D. L. Egorov, et al., Russ. J. Phys. Chem. B 16, 862–868 (2022). https://doi.org/10.1134/S1990793122040066

    Article  CAS  Google Scholar 

  11. M. Khaleghian, M. Zahmatkesh, F. Mollaamin, and M. Monajjemi, Fullerenes, Nanotubes and Carbon Nanostructures 19, 251 (2011). https://doi.org/10.1080/15363831003721757

    Article  CAS  Google Scholar 

  12. F. Mollaamin, M. Monajjemi, J. Mol. Model. 29, 170 (2023). https://doi.org/10.1007/s00894-023-05567-8

    Article  CAS  PubMed  Google Scholar 

  13. B. P. Aduev, D. R. Nurmukhametov, N. V. Nelyubina, et al., Russ. J. Phys. Chem. B 17, 361 (2023). https://doi.org/10.1134/S1990793123020033

    Article  CAS  Google Scholar 

  14. F. Mollaamin and M. Monajjemi, Sensor Rev. 43 (37) 1–14 (2023). https://doi.org/10.1108/SR-03-2023-0040

    Article  Google Scholar 

  15. N. V. Dokhlikova, A. K. Gatin, S. Y. Sarvadiy, et al., Russ. J. Phys. Chem. B 16, 772 (2022). https://doi.org/10.1134/S1990793122040042

    Article  CAS  Google Scholar 

  16. F. Mollaamin and M. Monajjemi, C 9, 20 (2023). doi

  17. S. K. Dolukhanyan, A. G. Aleksanyan, O. P. Ter-Galstyan, et al., Russ. J. Phys. Chem. B 16, 76 (2022). https://doi.org/10.1134/S1990793122010043

    Article  CAS  Google Scholar 

  18. F. Mollaamin and M. Monajjemi, Clean Technol. 5 (1), 403–417 (2023). https://doi.org/10.3390/cleantechnol5010020

    Article  Google Scholar 

  19. F. Mollaamin and M. Monajjemi, J. Mol. Model. 29, 119 (2023). https://doi.org/10.1007/s00894-023-05526-3

    Article  CAS  PubMed  Google Scholar 

  20. X. Miao, S. Zhou, and C. Wang, Russ. J. Phys. Chem. B 16, 804 (2022). https://doi.org/10.1134/S199079312204011X

    Article  CAS  Google Scholar 

  21. M. V. Grishin, A. K. Gatin, V. G. Slutskii, et al., Russ. J. Phys. Chem. B 16, 395 (2022). https://doi.org/10.1134/S1990793122030150

    Article  CAS  Google Scholar 

  22. H. Ou, X. Shi, Y. Lu, et al., Mater. 16, 1014 (2023). https://doi.org/10.3390/ma16031014

    Article  CAS  Google Scholar 

  23. N. V. Dokhlikova, A. K. Gatin, S. Y. Sarvadiy, et al., Russ. J. Phys. Chem. B 16, 361 (2022). https://doi.org/10.1134/S1990793122020166

    Article  CAS  Google Scholar 

  24. S. Zhu, T. Liu, J. Fan, et al., Mater. 15, 5995 (2022). https://doi.org/10.3390/ma15175995

    Article  CAS  Google Scholar 

  25. S. Das, Y. Zheng, A. Ahyi, et al., Mater. 15, 6736 (2022). https://doi.org/10.3390/ma15196736

    Article  CAS  Google Scholar 

  26. N. A. Kochetov, B. S. Seplyarsky, Russ. J. Phys. Chem. B 16, 66 (2022). https://doi.org/10.1134/S1990793122010079

    Article  CAS  Google Scholar 

  27. A. A. Dyshin, M. S. Kuzmikov, A. A. Aleshonkova, et al., Russ. J. Phys. Chem. B 15, 1221 (2021). https://doi.org/10.1134/S1990793121080030

    Article  CAS  Google Scholar 

  28. F. La Via, D. Alquier, F. Giannazzo, et al., Micromachines 14 (6), 1200 (2023). https://doi.org/10.3390/mi14061200

    Article  PubMed  PubMed Central  Google Scholar 

  29. S. Wang and M. Li, Russ. J. Phys. Chem. B 15 (Suppl. 2), S181 (2021). https://doi.org/10.1134/S1990793121100079

    Article  CAS  Google Scholar 

  30. S. Oglesby and S. A. Ivanov, A. Londonõ-Calderon, et al., Matererials 15, 3475 (2022). https://doi.org/10.3390/ma15103475

    Article  CAS  Google Scholar 

  31. F. Mollaamin and M. Monajjemi, Computation 11, 108 (2023). https://doi.org/10.3390/computation11060108

    Article  CAS  Google Scholar 

  32. L. S. Shibryaeva, L. R. Lyusova, S. G. Karpova, et al., Russ. J. Phys. Chem. B 16, 334 (2022). https://doi.org/10.1134/S199079312202021X

    Article  CAS  Google Scholar 

  33. E. V. Ramos-Fernández and J. Narciso, Materials 16, 2034 (2023). https://doi.org/10.3390/ma16052034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. S. Shikunov, A. Kaledin, I. Shikunova, et al., Coatings 13, 354 (2023). https://doi.org/10.3390/coatings13020354

    Article  CAS  Google Scholar 

  35. M. I. Skobin, M. A. Feofanova, V. M. Nikolskiy, et al., Russ. J. Phys. Chem. B 16, 329 (2022). https://doi.org/10.1134/S1990793122020245

    Article  CAS  Google Scholar 

  36. J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  PubMed  Google Scholar 

  37. I. L. Fufurin, I. B. Vintaikin, A. L. Nazolin, et al., Russ. J. Phys. Chem. B 16, 483 (2022). https://doi.org/10.1134/S1990793122030034

    Article  CAS  Google Scholar 

  38. A. Kaledin, S. Shikunov, K. Komarov, et al., Metals 13, 313 (2023). https://doi.org/10.3390/met13020313

    Article  CAS  Google Scholar 

  39. F. Mollaamin, S. Shahriari, M. Monajjemi, et al., J. Cluster Sci. 34, 1547 (2023). https://doi.org/10.1007/s10876-022-02335-1

    Article  CAS  Google Scholar 

  40. M. Monajjemi, F. Mollaamin, M.R. Gholami, et al., Main Group Met. Chem. 26, 349 (2003). https://doi.org/10.1515/MGMC.2003.26.6.349

    Article  CAS  Google Scholar 

  41. R. Dennington, T. A. Keith, J. M. Millam, GaussView. Version 6 (Shawnee Mission, KS, Semichem Inc., 2016).

    Google Scholar 

  42. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 16, Revision C.01 (Gaussian, Inc., Wallingford CT, 2016).

    Google Scholar 

  43. I. A. Shtepliuk, Sensors 23, 5631 (2023). https://doi.org/10.3390/s23125631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. F. Mollaamin, M. Monajjemi, S. Salemi, et al., Fullerenes, Nanotubes and Carbon Nanostructures 19 (3), 182 (2011). https://doi.org/10.1080/15363831003782932

    Article  CAS  Google Scholar 

  45. S. Lehtola, Int. J. Quantum Chem. 119 (19), e25968 (2019). https://doi.org/10.1002/qua.25968

    Article  CAS  Google Scholar 

  46. A. K. Gatin, M. V. Grishin, A. S. Prostnev, et al., Russ. J. Phys. Chem. B 16, 468 (2022). https://doi.org/10.1134/S1990793122030046

    Article  CAS  Google Scholar 

  47. A. S. Tarasov, V. A. Golyashov, I. O. Akhundov, et al., Russ. J. Phys. Chem. B 16, 479 (2022). https://doi.org/10.1134/S1990793122030241

    Article  CAS  Google Scholar 

  48. N. V. Dokhlikova, S. A. Ozerin, S. V. Doronin, et al., Russ. J. Phys. Chem. B 16, 461 (2022). https://doi.org/10.1134/S1990793122030137

    Article  CAS  Google Scholar 

  49. V. G. Kytin, A. V. Duvakina, E. A. Konstantinova, et al., Russ. J. Phys. Chem. B 16, 421 (2022). https://doi.org/10.1134/S1990793122030186

    Article  CAS  Google Scholar 

  50. E. M. Lozben, A. V. Lebedev, M. A. Deminsky, et al., Russ. J. Phys. Chem. B 16, 381 (2022). https://doi.org/10.1134/S1990793122030095

    Article  CAS  Google Scholar 

  51. F. Mollaamin, M. Monajjemi, J. Comput. Theor. Nanosci. 12 (6), 1030 (2015). https://doi.org/10.1166/jctn.2015.3846

    Article  CAS  Google Scholar 

  52. M. Monajjemi, H. Baheri, F. Mollaamin, J. Struct. Chem. 52, 54 (2011). https://doi.org/10.1134/S0022476611010070

    Article  CAS  Google Scholar 

  53. S. O. Adamson, D. D. Kharlampidi, G. V. Golubkov, et al., Russ. J. Phys. Chem. B 15, 755 (2021). https://doi.org/10.1134/S1990793121050122

    Article  CAS  Google Scholar 

  54. M. Monajjemi, N. Farahani, and F. Mollaamin, Phys. Chem. Liq. 50, 161 (2012). https://doi.org/10.1080/00319104.2010.527842

    Article  CAS  Google Scholar 

  55. M. A. A. Zadeh, H. Lari, L. Kharghanian, et al., J. Comput. Theor. Nanosci. 12, 4358 (2015). https://doi.org/10.1166/jctn.2015.4366

    Article  CAS  Google Scholar 

  56. B. Ghalandari, M. Monajjemi, F. Mollaamin, J. Comput. Theor. Nanosci. 8, 1212 (2011). https://doi.org/10.1166/jctn.2011.1801

    Article  CAS  Google Scholar 

  57. M. Monajjemi, L. Mahdavian, F. Mollaamin, et al., Russ. J. Inorganic Chem. 54, 1465 (2009). https://doi.org/10.1134/S0036023609090216

    Article  Google Scholar 

  58. S. Sarvendra Kumar, and M. K. Yadav, Russ. J. Phys. Chem. B 15 (Suppl 1), S22 (2021). https://doi.org/10.1134/S1990793121090116

    Article  CAS  Google Scholar 

  59. B. Khalili Hadad, F. Mollaamin, and M. Monajjemi, Russ. Chem. Bull. 60, 238 (2011). https://doi.org/10.1007/s11172-011-0039-5

    Article  CAS  Google Scholar 

  60. M. Monajjemi, F. Mollaamin, and S. Shojaei, Biointerface Res. Appl. Chem. 3, 5575 (2020). https://doi.org/10.33263/BRIAC103.575585

    Article  Google Scholar 

  61. A. Tahan, F. Mollaamin, and M. Monajjemi, Russ. J. Phys. Chem. A 83, 587 (2009). https://doi.org/10.1134/S003602440904013X

    Article  CAS  Google Scholar 

  62. M. Monajjemi, M. Khaleghian, N. Tadayonpour, et al., Int. J. Nanosci. 9 (5), 517–529 (2010). https://doi.org/10.1142/S0219581X10007071

    Article  CAS  Google Scholar 

  63. F. Mollaamin and M. Monajjemi, Russ. J. Phys. Chem. B 17, 658–672 (2023). https://doi.org/10.1134/S1990793123030223

    Article  CAS  Google Scholar 

  64. F. Mollaamin, A. Ilkhani, N. Sakhaei, et al., J. Comput. Theor. Nanosci. 12, 3148 (2015). https://doi.org/10.1166/jctn.2015.4092

    Article  CAS  Google Scholar 

  65. E. M. Sarasia, S. Afsharnezhad, B. Honarparvar, et al., Phys. Chem. Liq. 49, 561 (2011). https://doi.org/10.1080/00319101003698992

    Article  CAS  Google Scholar 

  66. A. A. Lundin and V. E. Zobov, Russ. J. Phys. Chem. B 15, 839 (2021). https://doi.org/10.1134/S1990793121050079

    Article  CAS  Google Scholar 

  67. F. Mollaamin and M. Monajjemi, C9, 20 (2023). doi

  68. V. F. Kablov, V. L. Strakhov, V. O. Kaledin, et al., Russ. J. Phys. Chem. B 15, 880 (2021). https://doi.org/10.1134/S1990793121050043

    Article  CAS  Google Scholar 

  69. A. Ghaffar, S. Nawaz, A. Munawar, et al., Russ. J. Phys. Chem. B 15 (Suppl 1), S42 (2021). https://doi.org/10.1134/S1990793121090074

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

In successfully completing this paper and its research, the authors are grateful to Kastamonu University for their support through the office, library, and scientific websites.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Mollaamin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mollaamin, F., Monajjemi, M. In Situ Ti-Embedded SiC as Chemiresistive Nanosensor for Safety Monitoring of CO, CO2, NO, NO2: Molecular Modelling by Conceptual Density Functional Theory. Russ. J. Phys. Chem. B 18, 49–66 (2024). https://doi.org/10.1134/S1990793124010159

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793124010159

Keywords:

Navigation