Skip to main content
Log in

Nanocluster of Aluminum Lattice via Organic Inhibitors Coating: A Study of Freundlich Adsorption

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The adsorption analysis of some organic inhibitors consisting of Pyridine, 2-Methylpyridine, 3-Methylpyridine, 4-Methylpyridine and 2, 4-Dimethylpyridine onto aluminum (111) metal surface based on optimized coordination of binding on the Al (111) metal surface has been accomplished. In this research, the ONIOM approach has been performed with a three-layered level of high level of DFT method using 6–31 + G* and LANL2DZ basis sets by the physico-chemical software of Gaussian 09, a medium semi-active part that includes important electronic contributions, and a low level part that has been handled using MM2 force field approaches. The physico-chemical properties of adsorption -surface complexes are one of the principal parameters for determining and choosing the adsorption. The characteristic of the metal (111)-lattice in solutions of hydrochloric acid and nitric acid by some heterocyclic compounds including Pyridine, 2-Methylpyridine, 3-Methylpyridine, 4-Methylpyridine and 2, 4-Dimethylpyridine has been estimated through NMR and IR results. Nitrogen atom in pyridine cycle with the most influence on the NMR shielding of isotropic and anisotropic tensors has leaded us toward the active site for adsorption onto Al (111) surface. Moreover, the IR spectrum for each of these heterocyclic compounds consisting of Pyridine, 2-Methylpyridine, 3-Methylpyridine, 4-Methylpyridine and 2, 4-Dimethylpyridine has been indicted in the frequency range between 500 cm−1 and 3250 cm−1 by the strongest peaks about 550 cm−1, 1500 cm−1, and 3250 cm−1. In this work, the co-adsorption of Cl / NO3 anions with H+ads cation onto aluminum-surface through the optimized adsorption energy for these compounds on a top site of metal (111) has been accomplished. Our calculations have illustrated that the adsorption stability energy of pyridine and its derivatives depends on the structure, the adsorption site and the acidic media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Scheme 3
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G. Tarantella (1991). Corrosion 47, 410.

    Article  Google Scholar 

  2. G. Schmitt (1984). Corros. J. 19, 165.

    Article  CAS  Google Scholar 

  3. J. O. M. Bockris and B. Yang (1991). J. Electrochem. Soc. 138, 2237.

    Article  CAS  Google Scholar 

  4. F. B. Growcock and V. R. Lopp (1988). Corros. Sci. 28, 397.

    Article  CAS  Google Scholar 

  5. M. Bartos and N. Hackerman (1992). J. Electrochem. Soc. 139 (3), 429.

    Google Scholar 

  6. F. Zucchi, G. Trabanelli, and G. Brunoro (1992). Corros. Sci. 33 (1), 135.

    Google Scholar 

  7. S. L. Graaese (1988). Corrosion. 44, 222.

    Google Scholar 

  8. A. B. Tadros and B. A. Abdenaby (1988). J. Electroanal. Chem. 246, 433.

    Article  CAS  Google Scholar 

  9. B. Mernari, H. Elattari, M. Traisnel, F. Bentiss, and M. Lagreence (1998). Corros. Sci. 40, 391.

    Article  CAS  Google Scholar 

  10. F. Bentiss, M. Lagreence, and M. Traisnel (1999). Corros. Sci. 41, 789.

    Article  CAS  Google Scholar 

  11. F. Bentiss, M. Traisnel, and M. Lagreence (2000). Corros. Sci. 42, 127.

    Article  CAS  Google Scholar 

  12. D. Xue Ging (1990). J. Appl. Surf. Sci. 40, 327.

    Article  Google Scholar 

  13. D. Chadwick and T. Hashemi (1978). Corros. Sci. 20, 88.

    Google Scholar 

  14. J. J. Xue Gadding (1991). J. Phys. Chem. 95, 7380.

    Article  Google Scholar 

  15. Khaleghian, M.; Zahmatkesh, M.; Mollaamin, F.; Monajjemi, M. (2011) Investigation of Solvent Effects on Armchair Single-Walled Carbon Nanotubes: A QM/MD Study. Fullerenes Nanotubes and Carbon Nanostructures 19

  16. L. Ming-Dao, B. Gang, K. Fu-Gui, Y. Lu-An, and Y. Xiao-Ci (1996). Acta Chemica. 12 (9), 859.

    Google Scholar 

  17. L. Ming-Dao, Y. Lu-An, W. Qing-Yu, Y. Xiao-Ci, Y. Xiao-Dong, and Z. Jin-Yun (1996). J. Chinese Soc. Corrosion Protec. 16 (3), 195.

    Google Scholar 

  18. C. Wei (2019). Electrochemical deposition of aluminum. Technol. Innov. Appl. 18, 80–81.

    Google Scholar 

  19. H. M. Yang, Z. X. Qiu, and G. Zhang, Low Temperature Aluminum Electrolysis (Northeast University Press, Shenyang, China, 2009).

    Google Scholar 

  20. H. M. Lu and Z. X. Qiu (1997). Research progress of low temperature aluminum electrolysis. Light Metals 4, 24.

    Google Scholar 

  21. M. Monajjemi, M. T. Baie, and F. Mollaamin (2010). Interaction between threonine and cadmium cation in [Cd(Thr) n ]2+ (n = 1–3) complexes: density functional calculations. Russian Chemical Bulletin 59, 886–889.

    Article  CAS  Google Scholar 

  22. F. Mollaamin and M. Monajjemi (2015). Harmonic linear combination and normal mode analysis of semiconductor nanotubes vibrations. J. Comput. Theor. Nanosci. 12, 1030–1039.

    Article  CAS  Google Scholar 

  23. P. Wasserscheid and T. Welton, Ionic Liquids in Synthesis; John Wiley & Sons: Hoboken (NJ, USA, 2008).

    Google Scholar 

  24. M. Zhang, V. Kamavarum, and R. G. Reddy (2003). New electrolytes for aluminum production. Ionic Liquids. JOM 55, 54.

    CAS  Google Scholar 

  25. G. C. Tian, J. Li, and Y. X. Hua (2009). Application of ionic liquids in metallurgy of nonferrous metals. Chin. J. Process Eng. 9, 200.

    CAS  Google Scholar 

  26. G. C. Tian, J. Li, and Y. X. Hua (2010). Application of ionic liquids in hydrometallurgy of nonferrous metals. Trans. Nonferrous Met. Soc. China 20, 513.

    Article  CAS  Google Scholar 

  27. M. Monajjemi, S. Afsharnezhad, M. R. Jaafari, S. Mirdamadi, F. Mollaamin, and H. Monajemi (2008). Investigation of energy and NMR isotropic shift on the internal rotation Barrier of Θ4 dihedral angle of the DLPC: A GIAO study. Chemistry 17, 55–69.

    CAS  Google Scholar 

  28. G. C. Tian (2019). Ionic liquids as green electrolytes for Aluminum and Aluminum-alloy production. Mater. Res. Found. 54, 249.

    Article  CAS  Google Scholar 

  29. X. W. Zhong, T. Xiong, J. Lu, and Z. N. Shi (2014). Advances of electro-deposition and aluminum refining of aluminum and aluminum alloy in ionic liquid electrolytes system. Nonferrous Met. Sci. Eng. 5, 44.

    CAS  Google Scholar 

  30. Y. Zheng, Q. Wang, Y. J. Zheng, and H. C. Lv (2015). Advances in research and application of aluminum electrolysis in ionic liquid systems. Chin. J. Process Eng. 15, 713.

    CAS  Google Scholar 

  31. V. Fleury, J. H. Kaufman, and D. B. Hibbert (1994). Mechanism of a morphology transition in ramified electrochemical growth. Nature 367, 435.

    Article  CAS  Google Scholar 

  32. G. Yue, X. Lu, Y. Zhu, X. Zhang, and S. Zhang (2009). Surface morphology, crystal structure and orientation of aluminum coatings electrodeposited on mild steel in ionic liquid. Chem. Eng. J. 147, 79.

    Article  CAS  Google Scholar 

  33. A. P. Abbott, F. Qiu, H. M. Abood, M. R. Ali, and K. S. Ryder (1862). Double layer, diluent and anode effects upon the electrodeposition of aluminum from chloroaluminate based ionic liquids. Phys. Chem. Chem. Phys. 2010, 12.

    Google Scholar 

  34. M. Monajjemi, L. Mahdavian, F. Mollaamin, and M. Khaleghian (2009). Interaction of Na, Mg, Al, Si with carbon nanotube (CNT): NMR and IR study. Russian J. Inorg. Chem. 54, 1465–1473.

    Article  Google Scholar 

  35. M. Ueda, S. Hariyama, and T. Ohtsuka (2012). Al electroplating on the AZ121 Mg alloy in an EMIC-AlCl3 ionic liquid containing ethylene glycol. J. Solid State Electrochem. 16, 3423.

    Article  CAS  Google Scholar 

  36. Q. Zhang, Q. Wang, S. Zhang, and X. Lu (2014). Effect of nicotinamide on electrodeposition of Al from aluminum chloride (AlCl3)-1-butyl-3-methylimidazolium chloride ([BMIM]Cl) ionic liquids. J. Solid State Electrochem. 18, 257.

    Article  CAS  Google Scholar 

  37. M. Monajjemi, M. Khaleghian, N. Tadayonpour, and F. Mollaamin (2010). The effect of different solvents and temperatures on stability of single-Walled carbon nanotube: A Qm/Md study. Int. J. Nanosci. 09, 517–529.

    Article  CAS  Google Scholar 

  38. B. Ghalandari, M. Monajjemi, and F. Mollaamin (2011). Theoretical investigation of carbon nanotube binding to DNA in view of drug delivery. J. Comput. Theor. Nanosci. 8, 1212–1219.

    Article  CAS  Google Scholar 

  39. F. Mollaamin, M. Monajjemi, S. Salemi, and M. T. Baei (2011). A dielectric effect on normal mode analysis and symmetry of BNNT Nanotube. Fullerenes Nanotubes and Carbon Nanostruc. 19, 182–196.

    Article  CAS  Google Scholar 

  40. N. Hackerman and A. C. Makrides (1954). Ind. Engng. Chem. 46, 523.

    Article  Google Scholar 

  41. K. Aramaki, N. Hackerman, and J. Eleclrochem (1968). Soc 115, 1007.

    CAS  Google Scholar 

  42. A.I. Altsybeeva, S.Z. Levin and A.P. Dorokhov (1970) European Symposium on Corrosion Inhibitors, Ferrera 501

  43. J. V. Barth, H. Brune, G. Ertl, and R. J. Behm (1990). Scanning tunneling microscopy observations on the reconstructed Au(111) surface: Atomic structure, long-range superstructure, rotational domains, and surface defects. Phys. Rev. B. 42, 9307–9318.

    Article  CAS  Google Scholar 

  44. D. Esken, S. Turner, O. I. Lebedev, G. van Tendeloo, and R. A. Fischer (2010). Au@ ZIFs: stabilization and encapsulation of cavity-size matching gold clusters inside functionalized zeolite imidazolate frameworks. ZIFs. Chem. Mater. 22, 6393–6401.

    Article  CAS  Google Scholar 

  45. F. Mollaamin, A. Ilkhani, N. Sakhaei, B. Bonsakhteh, A. Faridchehr, S. Tohidi, and M. Monajjemi (2015). Thermodynamic and solvent effect on dynamic structures of nano bilayer-cell membrane: hydrogen bonding study. J. Comput. Theoretical Nanosci. 12, 3148–3154.

    Article  CAS  Google Scholar 

  46. B. Liu and B. Smit (2010). Molecular simulation studies of separation of CO2/N2, CO2/CH4, and CH4/N2 by ZIFs. J. Phys. Chem. C 114, 8515–8522.

    Article  CAS  Google Scholar 

  47. S. Keskin (2010). Atomistic simulations for adsorption, diffusion, and separation of gas mixtures in zeolite imidazolate frameworks. J. Phys. Chem. C 115, 800–807.

    Article  Google Scholar 

  48. U. P. N. Tran, K. K. A. Le, and N. T. S. Phan (2011). Expanding applications of metal- organic frameworks: zeolite imidazolate framework ZIF-8 as an efficient heterogeneous catalyst for the knoevenagel reaction. ACS Catal. 1, 120–127.

    Article  CAS  Google Scholar 

  49. J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, and J. Hutter (2005). Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comp. Phys. Comm. 2, 103–128.

    Article  Google Scholar 

  50. A. Phan, C. J. Doonan, F. J. Uribe-Romo, C. B. Knobler, and O’keeffe, M., Yaghi, O. M. (2010). Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc. Chem. Res. 43, 58–67.

    Article  CAS  PubMed  Google Scholar 

  51. P. Hohenberg and W. Kohn (1964). Inhomogeneous electron gas. Phys. Rev. B 136, B864–B871.

    Article  Google Scholar 

  52. W. Kohn and L. J. Sham (1965). Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138.

    Article  Google Scholar 

  53. G. Lippert, J. Hutter, and M. Parrinello (1997). A hybrid Gaussian and plane wave density functional scheme. Mol. Phys. 92, 477–487.

    Article  CAS  Google Scholar 

  54. C. Hartwigsen, S. Goedecker, and J. Hutter (1998). Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Phys. Rev. B 58, 3641–3662.

    Article  CAS  Google Scholar 

  55. J. P. Perdew, K. Burke, and M. Ernzerhof (1996). Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77, 3865–3868.

    Article  CAS  PubMed  Google Scholar 

  56. J. VandeVondele and J. Hutter (2007). Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 127, 114105–114109.

    Article  PubMed  Google Scholar 

  57. M. Monajjemi, M. Noei, and F. Mollaamin (2010). Design of fMet-tRNA and calculation of its bonding properties by quantum mechanics. Nucleosides, Nucleotides & Nucleic Acids 29, 676–683.

    Article  CAS  Google Scholar 

  58. M. Mavrikakis, P. Stoltze, and J. K. Nørskov (2000). Making gold less noble. Catal. Lett. 64 (101–106), 59.

    Google Scholar 

  59. A. Dal Corso (2013). Ab initio phonon dispersions of transition and noble metals: effects of the exchange and correlation functional. J. Phys.; Condens Matter 25, 145401–145410.

    Article  Google Scholar 

  60. L. J. Whitman, J. A. Stroscio, R. A. Dragoset, and R. J. Celotta (1991). Geometric and electronic properties of Cs structures on III-V (110) surfaces: From 1D and 2D insulators to 3D metals. Phys. Rev. Lett. 66, 1338–1341.

    Article  CAS  PubMed  Google Scholar 

  61. M. A. A. Zadeh, H. Lari, L. Kharghanian, E. Balali, R. Khadivi, H. Yahyaei, F. Mollaamin, and M. Monajjemi (2015). Density functional theory study and anti-cancer properties of shyshaq plant. in view point of nano biotechnology. J. Comput. Theoret. Nanosci. 12, 4358–4367.

    Article  CAS  Google Scholar 

  62. H. Yildirim, T. Greber, and A. Kara (2013). Trends in adsorption characteristics of benzene on transition metal surfaces: role of surface chemistry and van der waals interactions. J. Phys. Chem. C 117, 20572–20583.

    Article  CAS  Google Scholar 

  63. A. Tahan, F. Mollaamin, and M. Monajjemi (2009). Thermochemistry and NBO analysis of peptide bond: Investigation of basis sets and binding energy. Russian J. Phys. Chem. A 83, 587–597.

    Article  CAS  Google Scholar 

  64. M. Hoefling, F. Iori, S. Corni, and K. E. Gottschalk (2010). The conformations of amino acids on a Gold(111) surface. Chem. Phys. Chem. 11, 1763–1767.

    Article  CAS  PubMed  Google Scholar 

  65. K. Bakhshi, F. Mollaamin, and M. Monajjemi (2011). Exchange and correlation effect of hydrogen chemisorption on nano V(100) Surface: A DFT study by generalized gradient approximation (GGA). J. Comput. Theoret. Nanosci. 8, 763–768. https://doi.org/10.1166/jctn.2011.1750.

    Article  CAS  Google Scholar 

  66. B. Cordero, V. Gómez, A. E. Platero-Prats, M. Revés, J. Echeverría, E. Cremades, F. Barragán, and S. Alvarez (2008). Covalent radii revisited. Dalton Trans. 21, 2832–2838.

    Article  Google Scholar 

  67. A. van der Bondii (1964). Waals Volumes and Radii. Phys. Chem. 68, 441–451.

    Article  Google Scholar 

  68. H. Valencia, M. Kohyama, S. Tanaka, and H. Matsumoto (2008). Ab initio study of EMIM-BF4 molecule adsorption on Li surfaces as a model for ionic liquid/Li interfaces in Li-ion batteries. Phys. Rev. B 78, 205402.

    Article  Google Scholar 

  69. H. Valencia, M. Kohyama, S. Tanaka, and H. Matsumoto (2009). Ab initio study of EMIM-BF4 crystal interaction with a Li (100) surface as a model for ionic liquid/Li interfaces in Li-ion batteries. J. Chem. Phys. 131, 244705.

    Article  PubMed  Google Scholar 

  70. J. Clarke-Hannaford, M. Breedon, A. S. Best, and M. J. Spencer (2019). The interaction of ethylammoniumtetrafluoroborate [EtNH3+][BF4] ionic liquid on the Li (001) surface, towards understanding early SEI formation on Li metal. Phys. Chem. Chem. Phys. 21, 10028–10037.

    Article  CAS  PubMed  Google Scholar 

  71. Q. Q. Zhang, Study on Electrodeposition of Aluminum and Aluminum Alloy in Ionic Liquid (University of Chinese Academy of Sciences, Beijing, China, 2014).

    Google Scholar 

  72. E. L. Kolsbjerg, M. N. Groves, and B. Hammer (2016). Pyridine adsorption and diffusion on Pt(111) investigated with density functional theory. J. Chem. Phys. 144, 164112.

    Article  PubMed  Google Scholar 

  73. S. Shimizu, N. Watanabe, T. Kataoka, T. Shoji, N. Abe, S. Morishita, and H. Ichimura (2000). Pyridine and pyridine derivatives. Ullmann’s Encyclopedia of Industrial Chemistry Weinheim: Wiley-VCH. https://doi.org/10.1002/14356007.a22_399.

    Article  Google Scholar 

  74. E. J. O’Loughlin, S. J. Traina, and G. K. Sims (2000). Effects of sorption on the biodegradation of 2-methylpyridine in aqueous suspensions of reference clay minerals. Environ. Toxicol. Chem. 19 (9), 2168–2174. https://doi.org/10.1002/etc.5620190904.

    Article  CAS  Google Scholar 

  75. Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; et al. Gaussian 09, Revision B.01. 2010. Gaussian Inc., Wallingford

  76. A. Fry, K. Kwon, S. D. Komarneni, J. T. Kubicki, and K. Mueller (2006). Solid-state NMR and computational chemistry study of mononucleotides adsorbed to alumina. Langmuir 22, 9281–9286.

    Article  CAS  PubMed  Google Scholar 

  77. M. Svensson, S. Humbel, R. D. J. Froese, T. Matsubara, S. Sieber, and K. Morokuma (1996). ONIOM: A Multilayered Integrated MO + MM method for geometry optimizations and single point energy predictions. A Test for diels−alder reactions and Pt(P(t-Bu)3)2 + H2 oxidative addition. J. Phys. Chem. 100 (50), 19357–19363. https://doi.org/10.1021/jp962071j.

    Article  CAS  Google Scholar 

  78. Felix Brandt and Christoph R. Jacob (2022). Systematic QM Region construction in QM/MM calculations based on uncertainty quantification. J. Chem. Theory Comput. 18 (4), 2584–2596. https://doi.org/10.1021/acs.jctc.1c01093.

    Article  CAS  PubMed  Google Scholar 

  79. A. Bilić, J. R. Reimers, and Hush.N.S. (2002). Adsorption of pyridine on the gold (111) surface: implications for “Alligator Clips” for molecular wires. J. Phys. Chem. B 106 (26), 6740–6747. https://doi.org/10.1021/jp020590i.

    Article  CAS  Google Scholar 

  80. Walter Malone and Abdelkader Kara (2020). A coverage dependent study of the adsorption of pyridine on the (111) coinage metal surfaces. Surface Science 693, 121525. https://doi.org/10.1016/j.susc.2019.121525.

    Article  CAS  Google Scholar 

  81. M. Monajjemi, F. Mollaamin, M. R. Gholami, H. Yoosbashizadeh, S. K. Sadrnezhad, and H. Passdar (2003). Quantum chemical parameters of some organic corrosion inhibitors, Pyridine, 2-Picoline 4-Picoline and 2, 4- Lutidine, adsorption at aluminum surface in hydrocholoric and nitric acids and comparison between two acidic media. Main Group Met. Chem. 26, 349–362.

    Article  CAS  Google Scholar 

  82. Elodie Dumont, Charlotte De Bleye, Merzouk Haouchine, Laureen Coïc, Pierre-Yves. Sacré, Philippe Hubert, and Eric Ziemons (2020). Effect of the functionalisation agent on the surface-enhanced Raman scattering (SERS) spectrum: Case study of pyridine derivatives. Spectrochimica Acta Part A: Mol. Biomol. Spectroscopy 233, 118180. https://doi.org/10.1016/j.saa.2020.118180.

    Article  CAS  Google Scholar 

  83. Doreen Mollenhauer, Nicola Gaston, Elena Voloshina, and Beate Paulus (2013). Interaction of pyridine derivatives with a gold (111) Surface as a model for adsorption to large nanoparticles. J. Phys. Chem. C 117 (9), 4470–4479. https://doi.org/10.1021/jp309625h.

    Article  CAS  Google Scholar 

  84. Cristina Isvoranu, Bin Wang, Evren Ataman, Karina Schulte, Jan Knudsen, Jesper N. Andersen, Marie-Laure. Bocquet, and Joachim Schnadt (2011). Pyridine adsorption on single-layer iron phthalocyanine on Au(111). The J. Phys. Chem. C 115 (41), 20201–20208. https://doi.org/10.1021/jp204460g.

    Article  CAS  Google Scholar 

  85. A. D. Becke (1993). Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652.

    Article  CAS  Google Scholar 

  86. C. Lee, W. Yang, and R. G. Parr (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789.

    Article  CAS  Google Scholar 

  87. K. Kim and K. D. Jordan (1994). Comparison of density functional and MP2 calculations on the water monomer and dimer. J. Phys. Chem. 98 (40), 10089–10094. https://doi.org/10.1021/j100091a024.

    Article  CAS  Google Scholar 

  88. P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch (1994). Ab Initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98 (45), 11623–11627. https://doi.org/10.1021/j100096a001.

    Article  CAS  Google Scholar 

  89. C. J. Cramer (2004) Essentials of computational chemistry: theories and models, 2nd Edition | Wiley". Wiley.com. Retrieved 2021–06–24.

  90. S. H. Vosko, L. Wilk, and M. Nusair (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys. 58 (8), 1200–1211. https://doi.org/10.1139/p80-159.

    Article  CAS  Google Scholar 

  91. Y. Xiao-Ci, Z. Hong, L. Ming-Dao, and R. Hong-Xuan (2000). Lu-An, Y. 42, 645–653.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Mollaamin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mollaamin, F., Shahriari, S., Monajjemi, M. et al. Nanocluster of Aluminum Lattice via Organic Inhibitors Coating: A Study of Freundlich Adsorption. J Clust Sci 34, 1547–1562 (2023). https://doi.org/10.1007/s10876-022-02335-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02335-1

Keywords

Navigation