Skip to main content
Log in

Biophysical chemistry of macrocycles for drug delivery: a theoretical study

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Ab initio (RHF/STO-3G) quantum chemical calculations using the self-consistent reaction field (SCRF) model were carried out to analyze the effect of solvent polarity on the relative Gibbs free energies, the dipole moments, and the structural stability of peptide macrocycles based on unsubstituted cyclo[Gly6] and its trisubstituted derivatives containing Me, NH2, or OH groups at the Cα atom. The macrocycles studied are stable in water at both room temperature and at body fever temperature, which is important for the design of a stable nanovehicle for drug delivery in water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. J. Mohanraj, Y. Chen, Trop. J. Pharm. Res., 2006, 5, 561.

    Google Scholar 

  2. M. C. Roco, Curr. Opin. Biotechnol., 2003, 14, 337.

    Article  CAS  Google Scholar 

  3. A. Raval, A. Choubey, C. Engineer, H. Kotadia, D. Kothwala, Trends Biomater. Artif. Organs, 2007, 20, 101.

    Google Scholar 

  4. Biomedical Nanotechnology, Ed. N. H. Malsch, CRC Press, Boca Raton, 2005, 232 pp.

    Google Scholar 

  5. G. M. Whitesides, M. Boncheva, Proc. Natl. Acad. Sci. USA, 2002, 99, 4769.

    Article  CAS  Google Scholar 

  6. Sh. Zhang, D. M. Marini, W. Hwang, S. Santoso, Curr. Opin. Chem. Biol., 2002, 6, 865.

    Article  Google Scholar 

  7. M. Monajjemi, V. S. Lee, M. Khaleghian, B. Honarparvar, F. Mollaamin, J. Phys. Chem. C, 2010, 114, 15315.

    Article  CAS  Google Scholar 

  8. M. Monajjemi, L. Mahdavian, F. Mollaamin, Bull. Chem. Soc. Ethiop., 2008, 22, 227.

    Google Scholar 

  9. S. Zhang, in Encyclopedia of Materials Science and Technology, Elsevier, Oxford, 2001, p. 5822.

    Google Scholar 

  10. W. C. Chan, P. D. White, Fmoc Solid Phase Peptide Synthesis: A Practical Approach, Oxford University Press, New York, 2000, p. 41.

    Google Scholar 

  11. A. Aggeli, I. A. Nyrkova, M. Bell, R. Harding, L. Carrick, T. C. B. McLeish, A. N. Semenov, N. Boden, Proc. Natl. Acad. Sci. USA, 2001, 98, 11857.

    Article  CAS  Google Scholar 

  12. M. Monajjemi, L. Mahdavian, F Mollaamin, M. Khaleghian, Zh. Neorg. Khim., 2009, 1536 [Russ. J. Inorg. Chem. (Engl. Transl.), 2009, 54, 1465].

    Google Scholar 

  13. W. A. Petka, J. L. Harden, K. P. McGrath, D. Wirtz, D. A. Tirrell, Science, 1998, 281, 389.

    Article  CAS  Google Scholar 

  14. S. R. Whaley, D. S. English, E. L. Hu, P. F. Barbara, A. M. Belcher, Nature, 2000, 405, 665.

    Article  CAS  Google Scholar 

  15. N. Mora-Diez, M. L. Senent, B. Garcia, Chem. Phys., 2006, 324, 350.

    Article  CAS  Google Scholar 

  16. D. C. Young, Computational Chemistry: A Practical Guide for Applying Techniques to Real-World Problems, John Wiley and Sons, New York-Weiheim, 2001, 381 pp.

    Google Scholar 

  17. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. I. Camm, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Raghavachari, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, J. A. Pople, Caussian-98, Revision A.7, Gaussian, Inc., Pittsburgh (PA), 1998.

    Google Scholar 

  18. S. Sairam, S. Mallaj, D. Ayan, K. Pati Swapan, Synth. Metals, 2005, 155, 398.

    Article  Google Scholar 

  19. A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev., 1988, 88, 899.

    Article  CAS  Google Scholar 

  20. M. Witanowski, Z. Biedrzycka, W. Sicinska, Z. Grabowski, J. Molec. Structure, 2002, 602–603, 199.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Monajjemi.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 233–236, February, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khalili Hadad, B., Mollaamin, F. & Monajjemi, M. Biophysical chemistry of macrocycles for drug delivery: a theoretical study. Russ Chem Bull 60, 238–241 (2011). https://doi.org/10.1007/s11172-011-0039-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-011-0039-5

Key words

Navigation