Skip to main content
Log in

Microwave Dehydration of Borax: Characterization, Dehydration Kinetics, and Modelling

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

In the present study, borax (Na2B4O7·10H2O) was dehydrated using microwave radiation and the dehydration rate curves were calculated. The kinetic parameters and mathematical constants of several drying models were calculated from the dehydration curve data. The best model was selected using the statistical analyses of R2, χ2, and root mean square error. From the best model, the kinetic parameters of the activation energy of dehydration were obtained. The powder X-ray diffraction (XRD) technique was applied to characterize the dehydrated compounds. From the results, borax was dehydrated in 18, 11, 6, and 5 min at 180, 360, 600, and 800 W, respectively. XRD analyses showed that borax was in an amorphous phase after microwave dehydration. The models of Midilli et al., and Page best fitted to dehydration curve data and from these models the activation energy was estimated as 7.6108 and 7.3294 kW g–1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Millas, I.G., Boron industry, sources, and evaporitic andean deposits: Geochemical characteristics and evolution paths of the superficial brines, in Recent Advances in Boron-Containing Materials, Aydin, M., Ed., London: IntechOpen, 2020.

    Google Scholar 

  2. Akpinar, S., Yazici, Z.O., and Can, M.F., Investigation of surface-modified anhydrous borax utilisation in raw glazes, Ceram. Int., 2018, vol. 44, no. 15, pp. 18344–18351.

    Article  CAS  Google Scholar 

  3. Helvacı, C. and Palmer, M.R., Origin and distribution of evaporite borates: The primary economic sources of boron, Elements, 2017, vol. 13, no. 4, pp. 249–254.

    Article  Google Scholar 

  4. Garrett, D.E., Borates: Handbook of Deposits, Processing, Properties, and Use, London, UK: Academic, 1998.

    Google Scholar 

  5. Akbay, E. and Altiokka, M.R., Kinetics of borax dehydration by thermal analysis, Anadolu Univ. J. Sci. Technol. A, 2017, vol. 18, no. 18, pp. 713–719.

    Google Scholar 

  6. Balcı, S., Sezgi, N.A., and Eren, E., Boron oxide production kinetics using boric acid as raw material, Ind. Eng. Chem. Res., 2012, vol. 51, no. 34, pp. 11091–11096.

    Article  Google Scholar 

  7. Urgnani, J., Torres, F.J., Palumbo, M., and Baricco, M., Hydrogen release from solid state NaBH4, Int. J. Hydrogen Energy, 2008, vol. 33, no. 12, pp. 3111–3115.

    Article  CAS  Google Scholar 

  8. Gençaslan, A. and Karaduman, A., Comparing of using dehydrated borax and sodium metaborate as borate source for sodium borohydride production in vibrating ball mill, J. Boron, 2016, vol. 1, no. 2, pp. 96–103.

    Google Scholar 

  9. Ekmekyapar, A., Baysar, A., and Kunkul, A., Dehydration kinetics of tincal and borax by thermal analysis, Ind. Eng. Chem. Res., 1997, vol. 36, no. 9, pp. 3487–3490.

    Article  CAS  Google Scholar 

  10. Gabriel, C., Gabriel, S., Grant, E., Halstead, B., and Mingos, D., Dielectric parameters relevant to microwave dielectric heating, Chem. Soc. Rev., 1998, vol. 27, no. 3, pp. 213–224.

    Article  CAS  Google Scholar 

  11. Loupy, A., Microwave in Organic Synthesis, Weinheim: Wiley-VCH, 2002.

    Book  Google Scholar 

  12. Kipcak, A.S., Moroydor Derun, E., and Piskin, S., Magnesium borate synthesis by microwave energy: A new method, J. Chem., 2013, vol. 2013, pp. 1–5.

    Article  Google Scholar 

  13. Bogdal, D. and Prociak, A., Microwave-Enhanced of Polymer Chemistry and Technology, Oxford, UK: Blackwell, 2007.

    Book  Google Scholar 

  14. Perelaer, J., Gans de, B., and Schubert, U., Ink-jet printing and microwave sintering of conductive silver tracks, Adv. Mater., 2006, vol. 18, no. 16, pp. 2101–2104.

    Article  CAS  Google Scholar 

  15. Tsuji, M., Hashimoto, Y., Nishizawa, Y., Kubokawa, M., and Tsuji, T., Microwave-assisted synthesis of metallic nanostructures in solution, Chem. Eur. J., 2005, vol. 11, no. 7, pp. 440–452.

    Article  CAS  Google Scholar 

  16. Li, J., Jin, Y.L., Zhang, X.G., and Yang, H., Microwave solid-state synthesis of spinel Li4Ti5O12 nanocrystallites as anode material for lithium-ion batteries, Solid State Ionics, 2007, vol. 178, no. 29, pp. 1590–1594.

    Article  CAS  Google Scholar 

  17. Elander, N., Jones, J., Lu, S., and Stone-Elander, S., Microwave-enhanced radiochemistry, Chem. Soc. Rev., 2000, vol. 29, no. 4, pp. 239–250.

    Article  CAS  Google Scholar 

  18. Shipe, W., Wolkenberg, S., and Linfsley, C., Accelerating lead development by microwave-enhanced medicinal chemistry, Drug Discov. Today Technol., 2005, vol. 2, no. 2, pp. 155–161.

    Article  CAS  Google Scholar 

  19. Collins, J. and Leadbeater, N., Microwave energy: A versatile tool for the biosciences, Org. Biomol. Chem., 2007, vol. 5, p. 1141.

    Article  CAS  Google Scholar 

  20. Nüchten, M., Ondruschka, B., Bonrath, W., and Gum, A., Microwave assisted synthesis—A critical technology overview, Green Chem., 2004, vol. 6, no. 3, pp. 128–141.

    Article  Google Scholar 

  21. Vanderah, T., Talking ceramics, Science, 2002, vol. 298, no. 5596, pp. 1182–1184.

    Article  CAS  Google Scholar 

  22. Li, Y., Lei, Y., Zhang, L., Peng, J., and Li, C., Microwave drying characteristics and kinetics of ilmenite, T. Nonfer. Met. Soc. China, 2011, vol. 21, pp. 202–207.

    Article  CAS  Google Scholar 

  23. Roussy, G., Zoulalian, A., Charreyre, M., and Thiebaut, J.M., How microwaves dehydrate zeolites, J. Chem. Phys., 1984, vol. 88, no. 23, pp. 5702–5708.

    Article  CAS  Google Scholar 

  24. Saito, Y., Kawahira, K., Yoshikawa, N., Todoroki, H., and Taniguchi, S., Dehydration behavior of goethite blended with graphite by microwave heating, ISIJ Int., 2011, vol. 51, no. 6, pp. 878–883.

    Article  CAS  Google Scholar 

  25. Eymir, C. and Okur, H., Dehydration of ulexite by microwave heating, Thermochim. Acta, 2005, vol. 428, no. 1, pp. 125–129.

    Article  CAS  Google Scholar 

  26. Kocakusak, S., Koroglu, H.J., and Tolun, R., Drying of wet boric acid by microwave heating, Chem. Eng. Process., 1998, vol. 37, no. 2, pp. 197–201.

    Article  CAS  Google Scholar 

  27. Kocakusak, S., Koroglu, H.J., Gozmen, T., Savascı, O.T., and Tolun, R., Drying of wet borax pentahydrate by microwave heating, Ind. Eng. Chem. Res., 1996, vol. 35, no. 1, pp. 159–163.

    Article  CAS  Google Scholar 

  28. Senberber, F.T., Yildirim, M., Ozdogan, I.N., Kipcak, A.S., and Moroydor Derun, E., Dehydration behavior and kinetics of kurnakovite under microwave radiation, Turk. J. Chem., 2017, vol. 41, pp. 399–409.

    Article  Google Scholar 

  29. Bircan, H. and Battal, O., Microwave drying of surface moisture of boric acid, AKU J. Sci. Eng., 2018, vol. 18, pp. 53–61.

    Article  Google Scholar 

  30. Lewis, W.K., The rate of drying of solid materials, J. Ind. Eng. Chem., 1921, vol. 13, no. 5, pp. 427–432.

    Article  CAS  Google Scholar 

  31. Aghlasho, M., Kianmehr, M.H., Khani, S., and Ghasemi, M., Mathematical modeling of carrot thin-layer drying using new model, Int. Agrophys., 2009, vol. 23, no. 4, pp. 313–317.

    Google Scholar 

  32. Wang, C.Y. and Singh, R.P., A Single Layer Drying Equation for Rough Rice, St. Joseph, MI: Am. Soc. Agric. Eng., 1978.

    Google Scholar 

  33. Page, G.E., Factors influencing the maximum rates of air drying of shelled corn in thin layer, Master’s Thesis, Lafayette, IN: Purdue Univ., 1949.

  34. Sharaf-Elden, Y.I., Blaisdell, J.L., and Hamdy, M.Y., A model for ear corn drying, Trans. ASAE, 1980, vol. 23, no. 5, pp. 1261–1265.

    Article  Google Scholar 

  35. Westerman, P.W., White, G.M., and Ross, I.J., Relative humidity effect on the high temperature drying of shelled corn, Trans. ASAE, 1973, vol. 16, no. 6, pp. 1136–1139.

    Article  Google Scholar 

  36. Corzo, O., Bracho, N., Pereira, A., and Vasquez, A., Weibull distribution for modeling air drying of coroba slices, LWT – Food Sci. Technol., 2008, vol. 41, no. 10, pp. 2023–2328.

    Article  CAS  Google Scholar 

  37. Togrul, I.T. and Pehlivan, D., Modelling of drying kinetics of single apricot, J. Food Eng., 2003, vol. 58, no. 1, pp. 23–32.

    Article  Google Scholar 

  38. Midilli, A., Kucuk, H., and Yapar, Z., A new model for single-layer drying, Dry Technol., 2007, vol. 20, no. 7, pp. 1503–1513.

    Article  Google Scholar 

  39. Jena, S. and Das, H., Modeling for vacuum drying characteristics of coconut presscake, J. Food Eng., 2007, vol. 79, no. 1, pp. 92–99.

    Article  Google Scholar 

  40. Alibas, I., Microwave drying of grapevine (Vitis vinifera L.) leaves and determination of some quality parameters, J. Agric. Sci., 2012, vol. 18, no. 1, pp. 43–53.

    Google Scholar 

  41. Doymaz, I., Kipcak, A.S., and Piskin, S., Microwave drying of green bean slices: Drying kinetics and physical quality, Czech J. Food Sci., 2015, vol. 33, pp. 367–375.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emek Moroydor Derun.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fatma Tugce Senberber Dumanli, Kipcak, A.S. & Derun, E.M. Microwave Dehydration of Borax: Characterization, Dehydration Kinetics, and Modelling. Glass Phys Chem 48, 210–218 (2022). https://doi.org/10.1134/S1087659622030087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659622030087

Keywords:

Navigation