Skip to main content
Log in

Calculation of Dimensions of a Three-Phase Reactor for Fisher—Tropsh Synthesis

  • Physicochemical Studies of Systems and Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The optimum loading on the iron-containing catalytic dispersion of the three-phase Fischer—Tropsch synthesis is 25 nL h−1 when using an autoclave reactor. The linear velocity of the synthesis gas corresponds to 0.003 cm s−1. Under these conditions, the following synthesis parameters were achieved: CO conversion of 80%, liquid hydrocarbon productivity 400 g kg Fe−1 h−1. Based on the data obtained, when modeling a column reactor for three-phase Fischer—Tropsch synthesis, the following unit dimensions were calculated: height 1.6 m, internal diameter 0.045 m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wood, D.A., Nwaoh, C., and Towler, B.F., J. Natural Gas Sci. Eng., 2012, vol. 9, pp. 196–208. https://doi.org/10.1016/j.jngse.2012.07.001

    Article  CAS  Google Scholar 

  2. Jürgens, S., Oßwald, P., Selinsek, M., Piermartini, P., Schwa, J., Pfeifer, P., Bauder, U., Ruoff, S., Rauch, B., and Köhler, M., Fuel Processing Technol., 2019, vol. 193, pp. 232–243. https://doi.org/10.1016/j.fuproc.2019.05.015

    Article  Google Scholar 

  3. Dry, M.E., Catal. Today, 2002, vol. 71, pp. 227–241. https://doi.org/10.1016/S0920-5861(01)00453-9

    Article  CAS  Google Scholar 

  4. Mordkovich, V.Z., Sineva, L.V., Kul’chakovskaya, E.V., and Asalieva, E.Yu., Kataliz v neftepererab. prom-sti (Catalysis in Oil Refinery Industry), 2015, vol. 15, no. 5, pp. 23–45. https://doi.org/10.18412/1816-0387-2015-5-23-45

    Article  CAS  Google Scholar 

  5. Kulikova, M.V. and Kuz’min, A.E., Russ. J. Appl. Chem., 2018, vol. 91, no. 4, pp. 597–601. https://doi.org/10.1134/S1070427218040109

    Article  CAS  Google Scholar 

  6. Maretto, C. and Krishna, R., Catal. Today, 1999, vol. 52, nos. 2–3, pp. 279–289. https://doi.org/10.1016/S0920-5861(99)00082-6

    Article  CAS  Google Scholar 

  7. Qian W.-x., Ma H.-f., Li, T., Ying W.-Y., and Fang D.-Y., J. Coal Sci. Eng. (China), 2012, vol. 18, no. 1, pp. 88–95. https://doi.org/10.1007/s12404-012-0115-y

    Article  CAS  Google Scholar 

  8. Li, C., Chin. J. Chem. Eng., 2018, vol. 26, no. 5, pp. 1102–1109. https://doi.org/10.1016/j.cjche.2018.01.002

    Article  CAS  Google Scholar 

  9. Orvalho, S., Hashida, M., Zednikova, M., Stanovsky, P., Ruzicka, M.C., Sasaki, S., and Tomiyama, A., Chem. Eng. J., 2018, vol. 351, pp. 799–815. https://doi.org/10.1016/j.cej.2018.06.115

    Article  CAS  Google Scholar 

  10. Basha, O.M., Sehabiagu, L., Abdel-Wahab, A., and Morsi, B.I., Int. J. Chem. Reactor Eng., 2015, vol. 13, no. 3, pp. 201–288. https://doi.org/10.1515/ijcre-2014-0146

    Article  CAS  Google Scholar 

  11. Seyednejadian, S., Rauch, R., Bensaid, S., Hofbauer, H., Webe, G., and Saracco, G., Appl. Sci., 2018, vol. 8, pp. 514–535. https://doi.org/10.3390/app8040514

    Article  Google Scholar 

  12. Hooshyar, N., Fatemi, S., and Rahmani, M., Chem. React. Eng., 2009, vol. 7, no. 1. A23. https://doi.org/10.2202/1542-6580.1844

    Google Scholar 

  13. Kulikova, M.V., Khazradji A.K.A., Dement’eva, O.S., Ivantsov, M.I., Flid, V.R., and Khadzhiev, S.N., Petrol. Chem., 2015, vol. 55, no. 7, pp. 537–541. https://doi.org/10.1134/S0965544115070087

    Article  CAS  Google Scholar 

  14. Kulikova, M.V., Dement’eva, O.S., Ilyin, S.O., and Khadzhiev, S.N., Petrol. Chem., 2017, vol. 57, no. 14, pp. 1318–1325. https://doi.org/10.1134/S0965544117140055

    Article  CAS  Google Scholar 

  15. Kulikova, M.V., Dement’eva, O.S., and Gorshkova, M.Y., Petrol. Chem., 2018, vol. 58, no. 10, pp. 855–862. https://doi.org/10.1134/S0965544118100092

    Article  CAS  Google Scholar 

  16. Kulikova, M.V, Dement’eva, O.S., Chudakova, M.V., and Ivantsov, M.I., Izv. Vuzov. Khimiya Khim. Tekhnolog., 2018, vol. 61, nos. 9–10, pp. 70–75. https://doi.org/10.6060/ivkkt.20186109-10.5863a

    Article  CAS  Google Scholar 

  17. Braginskii, L.N., Begachev, V.I., and Barabash, V.M., Peremeshivanie v zhidkikh sredakh (Stirring in Liquid Media), Leningrad: Khimiya, 1984 pp. 105–188.

    Google Scholar 

  18. Sokolov, V.N. and Domanskii, I.V., Gazozhidkostnye reaktory (Gas-Liquid Reactors), Leningrad: Mashinostroenie, 1976 pp. 53–76.

    Google Scholar 

  19. Kölbel, H. and Ralek, M., Catal. Rev. Sci. Eng., 1980, vol. 21, pp. 225–274. https://doi.org/10.1080/03602458008067534

    Article  Google Scholar 

Download references

Acknowledgments

In this work, we used the equipment of the collective use center “New petrochemical processes, polymer composites and adhesives”.

Funding

This work was financially supported by the Ministry of Education and Science of the Russian Federation (Agreement no. 14.607.21.0168, unique identifier of applied scientific research RFMEFI60717X0168).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Kulikova.

Ethics declarations

The authors declare that there is no conflict of interest requiring disclosure in this article.

Additional information

Russian Text © The Author(s), 2019, published in Zhurnal Prikladnoi Khimii, 2019, Vol. 92, No. 13, pp. 1742–1748.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulikova, M.V., Chudakova, M.V., Kuzmin, A.E. et al. Calculation of Dimensions of a Three-Phase Reactor for Fisher—Tropsh Synthesis. Russ J Appl Chem 92, 1820–1825 (2019). https://doi.org/10.1134/S1070427219120253

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427219120253

Keywords

Navigation