Skip to main content
Log in

Modeling of a slurry bubble column reactor for Fischer-Tropsch synthesis

  • Published:
Journal of Coal Science and Engineering (China)

Abstract

On the basis of the global CO consumption rate model, the lumped product distribution model and the sedimentation-dispersion model of a catalyst, a steady-state, one-dimensional mathematical model of the slurry bubble column reactor for Fischer-Tropsch synthesis were established. The mathematical simulation of the slurry bubble column reactor for Fischer-Tropsch synthesis was carried out under the following typical industrial operating conditions: temperature 230 °C, pressure 3.0 MPa, gas flow 5×105 m3/h, catalyst content in slurry phase 30%, reactor diameter 5.0 m and the composition of feed gas: y(H2)=0.60, y(CO)=0.30, y(N2)=0.10. The influences of operating pressure, temperature and m(H2)/m(CO) in feed gas on the reactor’s reaction performance were simulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Decker W D, Serpemen Y, Ralek M, Schmidt B, 1982. Modeling the Fischer-Tropsch synthesis in the slurry phase. Industrial & Engineering Chemistry Process Design and Development, 21(2): 231–241.

    Article  Google Scholar 

  • Dijk H A J, Hoebink H B J, Schouten J C, 2001. Steady-state isotopic transient kinetic analysis of the Fischer-Tropsch synthesis reaction over cobalt-based catalysts. Chemical Engineering Science, 56(4): 1211–1219.

    Article  Google Scholar 

  • Dry M E, 2002. The Fischer-Tropsch process: 1950–2000. Catalysis Today, 71(3–4): 227–241.

    Article  Google Scholar 

  • Ledakowicz S, 1992. Methanol synthesis in bubble column slurry reactors. Chemical Engineering & Processing, 31(4): 212–219.

    Google Scholar 

  • Nigam K D P, Schumpe A, 1996. Three-phase sparged reactors. Amsterdam: Gordon and Breach Publishers.

    Google Scholar 

  • Qian W X, 2011a. Reaction kinetics of Fischer-Tropsch synthesis over a Co/AC catalyst and mathematical simulation of slurry bubble column reactor. Docter’s Thesis, East China University of Science and Technology.

  • Qian W X, Zhang H T, Ying W Y, Fang D Y, 2011b. The Product distributions of Fischer-Tropsch synthesis over a Co/AC catalyst. Journal of Natural Gas Chemistry, 20(4): 389–396.

    Article  Google Scholar 

  • Rados N, Dahhan M H, Dudukovic M P, 2003. Modeling of the Fischer-Tropsch synthesis in slurry bubble column reactors. Catalysis Today, 79–80: 211–218.

    Article  Google Scholar 

  • Sanders E, Deckwer W D, 1987. Fischer-Tropsch synthesis in slurry phase: effect of CO2 inhibition on performance of bubble column slurry reactors. The Canadian Journal of Chemical Engineering, 65(1): 119–126.

    Article  Google Scholar 

  • Sehabiague L, Lemoine R, Behkish A, Heintz Y J, Sanoja M, Oukaci R, Morsi B I, 2008. Modeling and optimization of a large-scale slurry bubble column reactor for producing 10 000 barrels per day of Fischer-Tropsch liquid hydrocarbons. Journal of the Chinese Institute of Chemical Engineers, 39(2): 169–179.

    Article  Google Scholar 

  • Smith D N, Ruether J A, 1985. Dispersed solid dynamics in a slurry bubble column. Chemical Engineering Science, 40(5): 741–754.

    Article  Google Scholar 

  • van der Laan G P, Beenackers A A C M, Krishna R, 1999. Multicomponent reaction engineering model for Fe-catalyzed Fischer-Tropsch synthesis in commercial scale slurry bubble column reactors. Chemical Engineering Science, 54: 5013–5029.

    Article  Google Scholar 

  • Visconti C G, Lietti L, Tronconi E, Forzatti P, Zennaro R, Finocchio E, 2009. Fischer-Tropsch synthesis on a Co/Al2O3 catalyst with CO2 containing syngas. Applied Catalysis A: General, 355(1–2): 61–68.

    Article  Google Scholar 

  • Wang T F, Wang J F, Jin Y, 2007. Slurry reactors for gas-to-liquid processes: a review. Industrial & Engineering Chemistry Research, 46(18): 5824–5847.

    Article  Google Scholar 

  • Wang Y N, Li Y W, Zhao Y L, Zhang B J, 1999. Modeling of Fischer-Tropsch synthesis in bubble column slurry reactors: numerical analysis. Journal of Fuel Chemistry and Technology, 27(3): 193–202.

    Google Scholar 

  • Wang Y N, Xu Y Y, Li Y W, Zhan Y L, Zhang B J, 2003. Heterogeneous modeling for fixed-bed Fischer-Tropsch synthesis: reactor model and its applications. Chemical Engineering Science, 58(3–6): 867–875.

    Article  Google Scholar 

  • Wang Y, Fan W, Liu Y, Zeng Z Y, Hao X, Chang M, Zhang C H, Xu Y Y, Xiang H W, Li Y W, 2008. Modeling of the Fischer-Tropsch synthesis in slurry bubble column reactors. Chemical Engineering Process, 47(2): 222–228.

    Article  Google Scholar 

  • Zaman M, Khodadi A, Mortazav Y, 2009. Fischer-Tropsch synthesis over cobalt dispersed on carbon nanotubes-based supports and activated carbon. Fuel Processing Technology, 90(10): 1214–1219.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-yong Ying.

Additional information

Supported by the National High Technology Research and Development Plan of China (863 program) (2006AA05A111)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qian, Wx., Ma, Hf., Li, T. et al. Modeling of a slurry bubble column reactor for Fischer-Tropsch synthesis. J Coal Sci Eng China 18, 88–95 (2012). https://doi.org/10.1007/s12404-012-0115-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12404-012-0115-y

Keywords

Navigation