Skip to main content
Log in

Comparative Study of the Performance of Fischer–Tropsch Synthesis in Conventional Packed Bed and in Membrane Reactor Over Iron- and Cobalt-Based Catalysts

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A comparative study of Fischer–Tropsch synthesis for synthesizing liquid hydrocarbons from syngas was carried out in a conventional packed bed reactor and in a water perm-selective membrane reactor over iron and cobalt catalysts. The process was performed under different operating conditions, such as inlet syngas feed molar ratio, total pressure, gas velocity, temperature, reactor dimensions and sweep fluid ratio. The main simulation results show that the use of the concept of membrane reactor can improve the process performance compared to that obtained in the case of the conventional packed bed reactor. Furthermore, under certain operating conditions, the process could be intensified by a reduction of carbon monoxide conversion magnitude via the water–gas shift reaction. This is possible by using a hydrophilic membrane. Our findings indicate that the membrane reactor provides a quasi-complete conversion of carbon monoxide over iron- or cobalt-based catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

Cross section (\({\rm m}^{2}\))

a :

Kinetic constant of Fischer–Tropsch reaction over cobalt catalyst \({({\rm mol}\,{\rm s}^{-1}\,{\rm kg}_{\rm cat}^{-1}\,{\rm Pa}^{-2})}\)

\({A_{\rm m}}\) :

Membrane section \({({{\rm m}^{2}})}\)

b :

Adsorption coefficient of carbon monoxide \({\left({{\rm Pa}^{-1}}\right)}\)

\({C_{\rm pg}}\) :

Specific heat of the gas at constant pressure \({\left({{\rm J}\,\rm mol}^{-1}\,{\rm K}^{-1}\right)}\)

D :

Reactor diameter \({(\rm m)}\)

\({d_{\rm p}}\) :

Particle diameter (m)

\({F_i}\) :

Molar flow rate of component \({i\,\left({{\rm mol}\,{\rm s}^{-1}}\right)}\)

\({F_{\rm T}^0}\) :

Initial total molar flow rate \({\left({{\rm mol}\,{\rm s}^{-1}}\right)}\)

I :

The sweeping fluid ratio

\({J_{{\rm H}_2{\rm O}}}\) :

Permeation rate of water \({\left({{\rm mol}\,{\rm m}^{3}\,{\rm s}^{-1}}\right)}\)

K FTS :

Kinetic rate constant of the FT reaction \({\left({{\rm mol}\,{\rm kg}^{-1}\,{\rm s}^{-1}\,{\rm MPa}^{-1}}\right)}\)

\({K_{\rm WGS}}\) :

Kinetic rate constant of the WGS reaction \({\left({{\rm mol}\,{\rm kg}^{-1}\,{\rm s}}^{-1}\right)}\)

L :

Reactor length \({(\rm m)}\)

\({l}\) :

Dimensionless reactor length \({(\rm m)}\)

M :

Inlet molar flow ratio of hydrogen to carbon monoxide

\({P_{\rm T}}\) :

Total pressure (Pa)

P i :

Partial pressure of component i \({(\rm Pa)}\)

\({P_{{\rm H}_2{\rm O}} ^r}\) :

Water pressure in reaction side (Pa)

\({P_{{\rm H}_2{\rm O}} ^p}\) :

Water pressure in permeation side (Pa)

\({Q}\) :

Volumetric flow rate \({\left({{\rm m}^{3}\,{\rm s}^{-1}}\right)}\)

R i :

Reaction rate of component \({i \, \left({{\rm mol}\,{\rm kg}^{-1}\,{\rm s}^{-1}}\right)}\)

\({R_{\rm FTS}}\) :

Overall Fischer–Tropsch reaction rate \({\left({{\rm mol}\,{\rm kg}^{-1}\,{\rm s}^{-1}}\right)}\)

\({R_{\rm WGS}}\) :

Water–gas shift reaction rate \({\left({{\rm mol}\,{\rm kg}^{-1}\,{\rm s}^{-1}}\right)}\)

T :

Temperature (K)

\({T_{\rm sh}}\) :

Shell temperature (K)

\({U_{\rm sh}}\) :

Overall heat transfer coefficient shell fluid \({\left({\rm W}/{\rm m}^{2}\,{\rm K}\right)}\)

v :

Gas velocity \({\left({\rm ms}^{-1}\right)}\)

\({X_{\rm FTS}}\) :

Carbon monoxide conversion in FT reaction

X G :

Overall carbon monoxide conversion

\({X_{\rm WGS}}\) :

Carbon monoxide conversion in WGS reaction

\(Y_{{\rm H}_2{\rm O}}\) :

Removal water

z :

Axial reactor coordinate

\({\alpha}\) :

Adsorption parameter

\({\beta}\) :

Membrane permeability \({\left({{\rm mol}\,{\rm s}^{-1}\,{\rm m}^{-2}\,{\rm Pa}^{-1}}\right)}\)

\({\Delta H_i}\) :

Enthalpy of formation of component \({i \left({{\rm J}\,{\rm mol}^{-1}}\right)}\)

\({\varepsilon}\) :

Bed porosity

\({\mu}\) :

Gas viscosity \({\left({{\rm kg}\,{\rm m}^{-1}\,{\rm s}^{-1}}\right)}\)

\({\rho}\) :

Catalyst density \({\left({{\rm kg}\,{\rm m}^{-3}}\right)}\)

\({\rho _g}\) :

Gas density \({\left({{\rm kg}\,{\rm m}^{-3}}\right)}\)

\({\upsilon_{ij}}\) :

Stoichiometric coefficient of species i in reaction j

g :

Gas phase

n :

Number of hydrogen atom in average hydrocarbon

m :

Number of carbon atom in average hydrocarbon

sh:

Shell side

0:

Inlet conditions

i :

Chemical species

FTS:

Fischer–Tropsch Synthesis

HC:

Hydrocarbon

WGS:

Water–Gas Shift reaction

References

  1. Moka S., Pande M., Rani M., Gakhar R., Sharma M., Rani J., Bhaskarwar A.N.: Alternative fuels: an overview of current trends and scope for future. Renew. Sustain. Energy Rev. 32, 697–712 (2014)

    Article  Google Scholar 

  2. Fu T., Huang C., Lv J., Li Z.: Fuel production through Fischer–Tropsch synthesis on carbon nanotubes supported Co catalyst prepared by plasma. Fuel 121, 225–231 (2014)

    Article  Google Scholar 

  3. Grams J., Ura A., Kwapiński W.: ToF-SIMS as a versatile tool to study the surface properties of silica supported cobalt catalyst for Fischer–Tropsch synthesis. Fuel 122, 301–309 (2014)

    Article  Google Scholar 

  4. Antunes A., Simone A.M., Tibau F., Hoefle D., Gusmão A., Ribeiro A., Cartaxo R.: Patenting trends in natural gas Fischer–Tropsch synthesis. Stud. Surf. Sci. Catal. 167, 123–128 (2007)

    Article  Google Scholar 

  5. Aranifard S., Ammal S.C., Heyden A.: On the importance of metal-oxide interface sites for the water–gas–shift reaction over Pt/CeO2 catalysts. J. Catal. 309, 314–324 (2014)

    Article  Google Scholar 

  6. De Klerk A., Furimsky E.: Catalysis in the Refining of Fischer–Tropsch Syncrude. Royal Society of Chemistry, Canada (2010)

    Google Scholar 

  7. Espinoza R.L., Du Toit E., Santamaria J., Menendez M., Coronas J., Irusta S.: Use of membranes in Fischer–Tropsch reactors. Stud. Surf. Sci. Catal. 130, 389–394 (2000)

    Article  Google Scholar 

  8. Qian W., Zhang H., Ying W., Fang D.: The comprehensive kinetics of Fischer–Tropsch synthesis over a Co/AC catalyst on the basis of CO insertion mechanism. Chem. Eng. J. 228, 526–534 (2013)

    Article  Google Scholar 

  9. Shin M.S., Park N., Park M.J., Cheon J.Y., Kang J.K., Jun K.W., Ha K.S.: Modeling a channel-type reactor with a plate heat exchanger for cobalt-based Fischer–Tropsch synthesis. Fuel Process. Technol. 118, 235–243 (2014)

    Article  Google Scholar 

  10. Shimura K., Miyazawa T., Hanaoka T., Hirata S.: Factors influencing the activity of Co/Ca/TiO2 catalyst for Fischer–Tropsch synthesis. Catal Today 232, 2–10 (2014)

    Article  Google Scholar 

  11. Ding M., Yang Y., Li Y., Wang T., Ma L., Wu C.: Impact of H2/CO ratios on phase and performance of Mn-modified Fe-based Fischer–Tropsch synthesis. Catal. Appl Energy 112, 1241–1246 (2013)

    Article  Google Scholar 

  12. Adib H., Haghbakhsh R., Sa’idi M., Takassi M.A., Sharifi F., Koolivand M., Rahimpour M.R., Keshtkari S.: Modeling and optimization of Fischer–Tropsch synthesis in the presence of Co(III)/Al2 O 3 catalyst using artificial neural networks and genetic algorithm. J. Nat. Gas Sci. Eng. 10, 14–24 (2013)

    Article  Google Scholar 

  13. Schulz H.: Short history and present trends of Fischer–Tropsch synthesis. Appl. Catal. A Gen. 186, 3–12 (1999)

    Article  Google Scholar 

  14. Zolfaghari Z., Tavasoli A., Tabyar S., Pour A.N.: Enhancement of bimetallic Fe-Mn/CNTs nano catalyst activity and product selectivity using microemulsion technique. J. Energy Chem. 23, 57–65 (2014)

    Article  Google Scholar 

  15. Basile A., Gallucci F.: Membranes for Membrane Reactors: Preparation, Optimization and Selection. Wiley, Singapore (2011)

    Book  Google Scholar 

  16. Bayat M., Rahimpour M.R.: Simultaneous hydrogen injection and in-situ H2O removal in a novel thermally coupled two-membrane reactor concept for Fischer–Tropsch synthesis in GTL technology. J. Nat. Gas Sci. Eng. 9, 73–85 (2012)

    Article  Google Scholar 

  17. Arabpour M., Rahimpour M.R., Iranshahi D., Raeissi S.: Evaluation of maximum gasoline production of FischereTropsch synthesis reactions in GTL technology: a discretized approach. J. Nat. Gas Sci. Eng. 9, 209–219 (2012)

    Article  Google Scholar 

  18. Rahimpour M.R., Mirvakili A.: A novel configuration of decalin and hydrogen loop in optimized thermally coupled reactors in GTL technology via differential evolution method. J. Ind. Eng. Chem. 19, 508–522 (2013)

    Article  Google Scholar 

  19. Fernandes F.A.N.: Modeling of Fischer–Tropsch synthesis in a slurry reactor with water permeable membrane. J. Nat. Gas Chem. 16, 107–114 (2007)

    Article  Google Scholar 

  20. Rohde M.P., Schaub G., Khajavi S., Jansen J.C., Kapteijn F.: Fischer–Tropsch synthesis with in situ H2O removal-directions of membrane development. Microporous Mesoporous Mater. 115, 123–136 (2008)

    Article  Google Scholar 

  21. Iliuta I., Larachi F., Fongarland P.: Dimethyl ether synthesis with in situ H2O removal in fixed-bed membrane reactor: model and simulations. Ind. Eng. Chem. Res. 49, 6870–6877 (2010)

    Article  Google Scholar 

  22. Mazzone L.C.A., Fernandes F.A.N.: Modeling of Fischer–Tropsch synthesis in a tubular reactor. Latin Am. Appl. Res. 36, 141–148 (2006)

    Google Scholar 

  23. Fogler H.S.: Elements of Chemical Reaction Engineering. Prentice-Hall of India, New Delhi (2004)

    Google Scholar 

  24. Rahimpour M.R., Jokar S.M., Jamshidnejad Z.: A novel slurry bubble column membrane reactor concept for Fischer–Tropsch synthesis in GTL technology. Chem. Eng. Res. Des. 90, 383–396 (2012)

    Article  Google Scholar 

  25. Gholami F., Torabi A.M., Gholami Z.: Modeling the Fischer–Tropsch reaction in a slurry bubble column reactor. Int. Sch. Sci. Res. Innov. 3, 168–171 (2009)

    Google Scholar 

  26. Wenjie S., Jinglai Z., Bijiang Z.: Intraparticle diffusion effects in Fischer–Tropsch synthesis 1. Modeling of diffusion and reaction. J. Nat. Gas Chem. 5, 59–68 (1996)

    Google Scholar 

  27. Van der Laan G.P., Beenackers A.A.C.M., Krishna R.: Multicomponent reaction engineering model for Fe-catalyzed Fischer–Tropsch synthesis in commercial scale slurry bubble column reactors. Chem. Eng. Sci. 54, 5013–5019 (1999)

    Article  Google Scholar 

  28. Jager B., Espinoza R.: Advances in low temperature Fischer–Tropsch synthesis. Catal. Today 23, 17–28 (1995)

    Article  Google Scholar 

  29. Raje A.P., Davis B.H.: Fischer–Tropsch synthesis over iron-based catalysts in a slurry reactor. Reaction rates, selectivities and implications for improving hydrocarbon productivity. Catal. Today 36, 335–345 (1997)

    Article  Google Scholar 

  30. Maretto C., Krishna R.: Modelling of a bubble column slurry reactor for Fischer–Tropsch synthesis. Catal. Today 52, 279–289 (1999)

    Article  Google Scholar 

  31. Rohde, M.P.: In-situ H2O removal via hydrophilic membranes during Fischer–Tropsch and other fuel-related synthesis reactions. KIT Scientific Publishing (2010)

  32. Bayat M., Rahimpour M.R., Moghtaderi B.: Genetic algorithm strategy (GA) for optimization of a novel dual-stage slurry bubble column membrane configuration for Fischer–Tropsch synthesis in gas to liquid (GTL) technology. J. Nat. Gas Sci. Eng. 3, 555–570 (2011)

    Article  Google Scholar 

  33. Fernandes F.A.N., Teles U.M.: Modeling and optimization of Fischer–Tropsch products hydrocracking. Fuel Process Technol. 88, 207–214 (2007)

    Article  Google Scholar 

  34. Vervloet D., Kapteijn F., Nijenhuis J., van Ommen J.R.: Process intensification of tubular reactors: Considerations on catalyst hold-up of structured packings. Catal. Today 216, 111–116 (2013)

    Article  Google Scholar 

  35. Finlayson B.A.: Nonlinear Analysis in Chemical Engineering. McGraw-Hill, New York (1980)

    Google Scholar 

  36. De Smit E., Weckhuysen B.M.: The renaissance of iron-based Fischer–Tropsch synthesis: on the multifaceted catalyst deactivation behavior. Chem. Soc. Rev. 37, 2758–2781 (2008)

    Article  Google Scholar 

  37. Enger B.C., Fossan A.L., Borg Ø., Rytter E., Holmen A.: Modified alumina as catalyst support for cobalt in the Fischer–Tropsch synthesis. J. Catal. 284, 9–22 (2011)

    Article  Google Scholar 

  38. Dry, M.E.: In: Leach, B.E. (ed) Applied Industrial Catalysis vol. 2, Chapter 5. Academic Press, New York (1983)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lemnouer Chibane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alihellal, D., Chibane, L. Comparative Study of the Performance of Fischer–Tropsch Synthesis in Conventional Packed Bed and in Membrane Reactor Over Iron- and Cobalt-Based Catalysts. Arab J Sci Eng 41, 357–369 (2016). https://doi.org/10.1007/s13369-015-1836-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-015-1836-1

Keywords

Navigation