Skip to main content
Log in

Structuring in the formation technology of electrode material based on nafion proton-conducting polymer and thermally expanded graphite containing platinum nanoparticles on carbon black

  • Applied Electrochemistry and Metal Corrosion Protection
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Laboratory production technique is described for fabrication of an electrode material containing platinum nanoparticles on carbon black, proton-conducting polymer Nafion, and thermally expanded graphite for direct-energy-conversion systems (fuel cells, electrolyzers, electrochemical sensors). Results of a study of the material by differential thermal analysis are presented. Scanning and transmission electron microscopy was used to examine the structure of the material, and its elemental composition was determined by the EDX method. Dependences of the porosity of the material on its composition are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yilser Devrim and Ayhan Albostan, J. Electron. Mater., 2016, vol. 45, no. 8, pp. 3900–3907.

    Article  CAS  Google Scholar 

  2. Nedjeljko Seselj, Christian Engelbrekt, and Jingdong Zhang, Sci. Bull., 2015, vol. 60(9), pp. 864–876.

    Article  Google Scholar 

  3. Soo, L.T., Loh, K.S., Mohamad, A.B., et al., Appl. Catal., A, 2015, vol. 497, pp. 198–210.

    Article  CAS  Google Scholar 

  4. Iwan, A., Malinowski, M., and Pasciak, G., Renewable Sustai nable Energy Rev., 2015, vol. 49, pp. 954–967.

    Article  CAS  Google Scholar 

  5. Wang, X.-X., Zhou, Y.-Q., Zhu, Y., et al., J. Chem. Chem. Eng. Croatia, 2016, vol. 65 (5–6), pp. 259–264.

    CAS  Google Scholar 

  6. Alekseeva, O.K. and Fateev, V.N., Al’tern. Energ. Ekol., 2015, vol. 7, pp. 14–36.

    Google Scholar 

  7. Miculescu, M., Miculescu, F., Thakur, V.K., and Voicu, S.I., Polym. Adv. Technol., 2016, vol. 27, pp. 844–859.

    Article  CAS  Google Scholar 

  8. Lee, J.Y., Lee, J.J., Rhim, H.R., et al., Adv. Mater. Res., 2010, vols. 123–125, pp. 1107–1110.

    Article  Google Scholar 

  9. Yakovlev, A.V., Finaenov, A.I., Zabud’kov, S.L., and Yakovle va, E.V., Russ. J. Appl. Chem., 2006, vol. 79, no. 11, pp. 1741–1751.

    Article  CAS  Google Scholar 

  10. Finaenov, A.I., Shpak, I.E., Afonina, A.V., et al., Khim. Khim. Tekhnol., 2012, no. 4 (68), pp. 107–112.

    Google Scholar 

  11. Krasnova, A.O., Glebova, N.V., and Nechitailov, A.A., Russ. J. Appl. Chem., 2016, vol. 89, no. 5, pp. 916–920.

    Article  CAS  Google Scholar 

  12. Kovaleva, O.V., Kovalev, V.V., Duka, G.G., and Ivanov, M.V., Probl. Region. Energet., 2011, no. 1, pp. 1–17.

    Google Scholar 

  13. http:www.fuelcellstore.comvulcan–xc72.

  14. RF Patent 2 581 382 (publ. 2016).

  15. Zhang, J., PEM Fuel Cell Electrocatalysts and Catalyst Layer, Vancouver Springer, 2008.

    Book  Google Scholar 

  16. Nechitailov, A.A., Glebova, N.V., Koshkina, D.V., et al., Tech. Phys. Lett., 2013, vol. 39, no. 9, pp. 762–766.

    Article  CAS  Google Scholar 

  17. M. Barclay Satterfield, Paul W. Majsztrik, Hitoshi Ota, et al., J. Polym. Sci., B, 2006, vol. 44, pp. 2327–2345.

    Article  CAS  Google Scholar 

  18. Kakaç, S., Pramuanjaroenkij, A., and Vasiliev, L., Mini-Micro Fuel Cells: Fundamentals and Applications. New York: Springer Science & Business Media, 2008.

    Book  Google Scholar 

  19. Kachala, V.V., Khemchyan, L.L., Kashin, A.S., et al., Uspekhi Khim., 2013, vol. 82, pp. 648–685.

    Article  Google Scholar 

  20. Kashin, A.S. and Ananikov, V.P., Russ. Chem. Bull. Int. Ed., 2011, vol. 60, pp. 2602–2607.

    Article  CAS  Google Scholar 

  21. Fizicheskaya entsiklopediya: Teplota sgoraniya (Physical Encyclopedia: Combustion Heat), Prokhorov, A.M., Ed., Moscow, Sov. entsiklopediya, 1999.

  22. Sadov, S.V., Sotskaya, N.V., and Kravchenko, T.A., Zh. Fiz. Khim., 1993, vol. 67, pp. 2027–2029.

    CAS  Google Scholar 

  23. Glebova, N.V., Nechitailov, A.A., and Gurin, V.N., Tech. Phys. Lett., 2011, vol. 37, no. 7, pp. 661–663.

    Article  CAS  Google Scholar 

  24. Mingbao Feng, Ruijuan Qu, Zhongbo Wei, et al., Sci. Rep., 2015, vol. 5 (9859), pp. 1–8.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Nechitailov.

Additional information

Original Russian Text © A.O. Krasnova, N.V. Glebova, D.V. Zhilina, A.A. Nechitailov, 2017, published in Zhurnal Prikladnoi Khimii, 2017, Vol. 90, No. 3, pp. 299−306.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krasnova, A.O., Glebova, N.V., Zhilina, D.V. et al. Structuring in the formation technology of electrode material based on nafion proton-conducting polymer and thermally expanded graphite containing platinum nanoparticles on carbon black. Russ J Appl Chem 90, 361–368 (2017). https://doi.org/10.1134/S1070427217030065

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427217030065

Navigation