Skip to main content
Log in

Surface-Modified Oxide Nanoparticles: Synthesis and Application

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

This review deals with one of the most important classes of nanomaterials — oxide nanoparticles. Preparative methods for the synthesis of nanooxides, their hydro- and organosols, and methods for the chemical surface modification of oxide nanoparticles are comprehensively reviewed. The high surface area of nanooxide particles and their relatively low porosity allows efficient modification of the surface to obtain highly selective sorbents, microheterogeneous catalysts, biocompatible magnetic and fluorescent labels, means of drug delivery or removal of harmful components from living systems, and objects of environmental monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shlyakhtin, O.A., Adv. Polym. Sci., 2014, vol. 263, p. 223. doi https://doi.org/10.1007/978-3-319-05846-7_6

    Article  CAS  Google Scholar 

  2. Majidi, S., Sehrig, F.Z., Farkhani, S.M., Goloujeh, M.S., and Akbarzadeh, A., Art. Cell Nanomed. Biotechnol., 2016, vol. 44, no. 2, p. 722. doi https://doi.org/10.3109/21691401.2014.982802

    Article  CAS  Google Scholar 

  3. Gubin, S.P., Koksharov, Yu.A., Khomutov, G.B., and Yurkov, G.Yu., Russ. Chem. Rev., 2005, vol. 74, no. 6, p. 489. doi https://doi.org/10.1070/RC2005v074n06ABEH000897

    Article  CAS  Google Scholar 

  4. Hosokawa, S., J. Ceram. Soc. Japan., 2016, vol. 124, no. 9, p. 870. doi https://doi.org/10.2109/jcersj2.16109

    Article  CAS  Google Scholar 

  5. Dunne, P.W., Lester, E., Starkey, C., Clark, I., Chen, Y., and Munn, A.S., Green Chem. Ser., 2018, no. 57, p. 449. doi https://doi.org/10.1039/9781788013543-00449.

  6. Lee, E. and Kwon, Y.U., Ultrason. Sonochem., 2016, vol. 29, p. 401. doi https://doi.org/10.1016/j.ultsonch.2015.10.013

    Article  CAS  PubMed  Google Scholar 

  7. Caricato, A.P., Luches, A., and Martino, M., in Handbook of Nanoparticles Aliofkhazraei, M., Ed., Elsevier, 2015, p. 407. doi https://doi.org/10.1007/978-3-319-15338-421

  8. Koshizaki, N. and Ishikawa, Y., in Laser Ablation in Liquids: Principles and Applications in the Preparation of Nanomaterials, Pan Stanford Publishing Pte. Ltd., 2012, p. 479. doi https://doi.org/10.4032/9789814241526

  9. Diab, R., Canilho, N., Pavel, I.A., Haffner, F.B., Girardon, M., and Pasc, A., Adv. Colloid Interface Sci., 2017, vol. 249, p. 346. doi https://doi.org/10.1016/j.cis.2017.04.005

    Article  CAS  PubMed  Google Scholar 

  10. Tabesh, S., Davar, F., and Loghman-Estarki, M.R., J. Alloys Compd., 2018, vol. 730, p. 441. doi https://doi.org/10.1016/j.jallcom.2017.09.246

    Article  CAS  Google Scholar 

  11. Hosseini, M.M., Kolvari, E., Zolfagharinia, S., and Hamzeh, M., J. Iran. Chem. Soc., 2017, vol. 14, no. 8, p. 1777. doi https://doi.org/10.1007/s13738-017-1118-9

    Article  CAS  Google Scholar 

  12. Scholz, S. and Kaskel, S., J. Colloid Interface Sci., 2008, vol. 323, no. 1, p. 84. doi https://doi.org/10.1016/j.jcis.2008.03.051

    Article  CAS  PubMed  Google Scholar 

  13. Fedotcheva, T.A., Olenin, A.Yu., Starostin, K.M., Lisichkin, G.V., Banin, V.V., and Shimanovskii, N.L., Pharm. Chem. J., 2015, vol. 49, no. 4, p. 220. doi https://doi.org/10.1007/s11094-015-1260-6

    Article  CAS  Google Scholar 

  14. Gobbo, O.L., Sjaastad, K., Radomski, M.W., Volkov, Y., and Prina-Mello, A., Theranostics., 2015, vol. 5, no. 11, p. 1249. doi https://doi.org/10.7150/thno.11544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sharm, V., J. Sol-Gel Sci. Technol., 2017, vol. 84, no. 2, p. 231. doi https://doi.org/10.1007/s10971-017-4507-8

    Article  CAS  Google Scholar 

  16. Das, S. and Jayaraman, V.S., Progr. Mater. Sci., 2014, vol. 66, p. 112. doi https://doi.org/10.1016/j.pmatsci.2014.06.003

    Article  CAS  Google Scholar 

  17. Ivanov, V.K., Shcherbakov, A.B., and Usatenko, A.V., Russ. Chem. Rev., 2009, vol. 78, no. 9, p. 855. doi https://doi.org/10.1070/RC2009v078n09ABEH004058

    Article  CAS  Google Scholar 

  18. Cai, X. and McGinnis, J.F., Adv. Exp. Med. Biol., 2016, vol. 854, p. 111. doi https://doi.org/10.1007/978-3-319-17121-0_16

    Article  CAS  PubMed  Google Scholar 

  19. Gongalsky, M.B., Osminkina, L.A., Pereira, A., Manankov, A.A., Fedorenko, A.A., Vasiliev, A.N., Solovyev, V.V., Kudryavtsev, A.A., Sentis, M., Kabashin, A.V., and Timoshenko, V.Yu., Sci. Rep., 2016, vol. 6, no. 24732, p. 1. doi https://doi.org/10.1038/srep24732

    Google Scholar 

  20. Liu, K., Bai, Y., Zhang, L., Yang, Z., Fan, Q., Zheng, H., Yin, Y., and Gao, C., Nano Lett., 2016, vol. 16, no. 6, p. 3675. doi https://doi.org/10.1021/acs.nanolett.6b00868

    Article  CAS  PubMed  Google Scholar 

  21. Lukowiak, A., Gerasymchuk, Y., Strek, W., Borak, B., Chiappini, A., Chiasera, A., Armellini, C., Ferrari, M., and Taccheo, S., Proc. SPIE, 2018, vol. 10683. Art. 106830M. doi https://doi.org/10.1117/12.2314734

  22. Ab Rahman, I. and Padavettan, V., J. Nanomater., 2012, vol. 2012. Art. 132424. doi https://doi.org/10.1155/2012/132424

  23. Zou, H., Wu, S., and Shen, J., Chem. Rev., 2008, vol. 108, no. 9, p. 3893. doi https://doi.org/10.1021/cr068035q

    Article  CAS  PubMed  Google Scholar 

  24. Barczak, M., McDonagh, C., and Wencel, D., Microchim. Acta, 2016, vol. 183, no. 7, p. 2085. doi https://doi.org/10.1007/s00604-016-1863-y

    Article  CAS  Google Scholar 

  25. Hakami, O., Zhang, Y., and Banks, C.J., Water Res., 2012, vol. 46, no. 12, p. 3913. doi https://doi.org/10.1016/j.watres.2012.04.032

    Article  CAS  PubMed  Google Scholar 

  26. Li, G., Zhao, Z., Liu, J., and Jiang, G., J. Hazard. Mater., 2011, vol. 192, no. 1, p. 277. doi https://doi.org/10.1016/j.jhazmat.2011.05.015

    CAS  PubMed  Google Scholar 

  27. Huang, C. and Hu, B., Spectrochim. Acta (B), 2008, vol. 63, no. 3, p. 437. doi https://doi.org/10.1016/j.sab.2007.12.010

    Article  CAS  Google Scholar 

  28. Shimizu, F.M., Pasqualeti, A.M., Todão, F.R., de Oliveira, J.F.A., Vieira, L.C.S., Gonçalves, S.P.C., da Silva, G.H., Cardoso, M.B., Gobbi, A.L., Martinez, D.S.T., Oliveira, O.N. Jr., and Lima, R.S., ACS Sens., 2018, vol. 3, no. 3, p. 716. doi https://doi.org/10.1021/acssensors.8b00056

    Article  CAS  PubMed  Google Scholar 

  29. Guo, Q., Yang, G., Huang, D., Cao, W., Ge, L., and Li, L., Colloid Polym. Sci., 2018, vol. 296, no. 2, p. 379. doi https://doi.org/10.1007/s00396-017-4260-0

    Article  CAS  Google Scholar 

  30. Hübner, C., Fettkenhauer, C., Voges, K., and Lupascu, D.C., Langmuir, 2018, vol. 34, no. 1, p. 376. doi https://doi.org/10.1021/acs.langmuir.7b03753

    Article  CAS  PubMed  Google Scholar 

  31. Koltsov, I., Smalc-Koziorowska, J., Przésniak-Welenc, M., Marysa, M., Kimmel, G., McGlynn, J., Ganin, A., and Stelmakh, S., Materials, 2018, vol. 11, no. 5. Art. 829. doi https://doi.org/10.3390/ma11050829

  32. Hosseinzadeh-Khanmiri, R., Kamel, Y., Keshvari, Z., Mobaraki, A., Shahverdizadeh, G.H., Vessally, E., and Babazadeh, M., Appl. Organomet. Chem., 2018, vol. 32, no. 9. Art. e4452. doi https://doi.org/10.1002/aoc.4452

  33. Cîrcu, M., Radu, T., Porav, A.S., and Turcu, R., Appl. Surf. Sci., 2018, vol. 453, p. 457. doi https://doi.org/10.1016/j.apsusc.2018.05.096

    Article  CAS  Google Scholar 

  34. Karimi, M., Ghandi, L., Saberi, D., and Heydari, A., New J. Chem., 2018, vol. 42, no. 5, p. 3900. doi https://doi.org/10.1039/c7nj02257c

    Article  CAS  Google Scholar 

  35. Jouyandeh, M., Paran, S.M.R., Shabanian, M., Ghiyasi, S., Vahabi, H., Badawi, M., Formela, K., Puglia, D., and Saeb, M.R., Progr. Org. Coat., 2018, vol. 123, p. 10. doi https://doi.org/10.1016/j.porgcoat.2018.06.006

    Article  CAS  Google Scholar 

  36. Magdalena, A.G., Silva, I.M.B., Marques, R.F.C., Pi-pi, A.R.F., Lisboa-Filho, P.N., and Jafelicci, M. Jr., J. Phys. Chem. Solids, 2018, vol. 113, p. 5. doi https://doi.org/10.1016/j.jpcs.2017.10.002

    Article  CAS  Google Scholar 

  37. Shah, S.T., Yehye, W.A., Saad, O., Simarani, K., Chowdhury, Z.Z., Alhadi, A.A., and Al-Ani, L.A., Nanomaterials, 2017, vol. 7, no. 10. Art. 306. doi https://doi.org/10.3390/nano7100306

  38. Enache, D.F., Vasile, E., Simonescu, C.M., Răzvan, A., Nicolescu, A., Nechifor, A.C., Oprea, O., Pătescu, R.E., Onose, C., and Dumitru, F., J. Solid State Chem., 2017, vol. 253, p. 318. doi https://doi.org/10.1016/j.jssc.2017.06.013

    Article  CAS  Google Scholar 

  39. Wang, B., Wu, P., Yokel, R.A., and Grulke, E.A., Appl. Surf. Sci., 2012, vol. 258, no. 14, p. 5332. doi https://doi.org/10.1016/j.apsusc.2012.01.142

    Article  CAS  Google Scholar 

  40. Tunusoğlu, Ö. and Demir, M.M., Ind. Eng. Chem. Res., 2013, vol. 52, no. 37, p. 13401. doi https://doi.org/10.1021/ie401872y

    Article  CAS  Google Scholar 

  41. Huang, X., Wang, B., Grulke, E.A., and Beck, M.J., J. Chem. Phys., 2014, vol. 140, no. 7. Art. 074703. doi https://doi.org/10.1063/1.4864378

  42. Luo, K., Zhou, S., Wu, L., and Gu, G., Langmuir, 2008, vol. 24, no. 20, p. 11497. doi https://doi.org/10.1021/la801943n

    Article  CAS  PubMed  Google Scholar 

  43. Zhou, S., Garnweitner, G., Niederberger, M., and Antonietti, M., Langmuir, 2007, vol. 23, no. 18, p. 9178. doi https://doi.org/10.1021/la700837u

    Article  CAS  PubMed  Google Scholar 

  44. Datta, A., Dasgupta, S., and Mukherjee, S., J. Nanopart. Res., 2017, vol. 19, no. 4. Art. 142. doi https://doi.org/10.1007/s11051-017-3835-5

  45. Lee, H.S., Park, J.M., Hwang, K.H., and Lim, H.M., Mater. Sci. Forum., 2018, vol. 922, p. 20. doi https://doi.org/10.4028/www.scientific.net/MSF.922.20

    Article  Google Scholar 

  46. Tong, M., Yu, J., Song, J., and Qi, R., J. Appl. Polym. Sci., 2013, vol. 130, no. 4, p. 2320. doi https://doi.org/10.1002/app.39403

    Article  CAS  Google Scholar 

  47. Singh, L.P., Bhattacharyya, S.K., Kumar, R., Mishra, G., Sharma, U., Singh, G., and Ahalawat, S., Adv. Colloid Interface Sci., 2014, vol. 214, p. 17. doi https://doi.org/10.1016/j.cis.2014.10.007

    Article  CAS  PubMed  Google Scholar 

  48. Cargnello, M., Gordon, T.R., and Murray, C.B., Chem. Rev., 2014, vol. 114, no. 19, p. 9319. doi https://doi.org/10.1021/cr500170p

    Article  CAS  PubMed  Google Scholar 

  49. Finnie, K.S., Bartlett, J.R., Barbe, C.J.A., and Kong, L., Langmuir, 2007, vol. 23, no. 6, p. 3017. doi https://doi.org/10.1021/la0624283

    Article  CAS  PubMed  Google Scholar 

  50. Bredereck, K., Effenberger, F., and Tretter, M., J. Colloid Interface Sci., 2011, vol. 360, no. 2, p. 408. doi https://doi.org/10.1016/j.jcis.2011.04.062

    Article  CAS  PubMed  Google Scholar 

  51. Zhang, T., Xu, G., Puckette, J., and Blum, F.D., J. Phys. Chem. (C), 2012, vol. 116, no. 21, p. 11626. doi https://doi.org/10.1021/jp303338t

    Article  CAS  Google Scholar 

  52. Mehan, S., Aswal, V.K., and Kohlbrecher, J., Langmuir, 2014, vol. 30, no. 33, p. 9941. doi https://doi.org/10.1021/la502410v

    Article  CAS  PubMed  Google Scholar 

  53. Mekawy, M.M., Yamaguchi, A., El-Safty, S.A., Itoh, T., and Teramae, N., J. Colloid Interface Sci., 2011, vol. 355, no. 2, p. 348. doi https://doi.org/10.1016/j.jcis.2010.11.056

    Article  CAS  PubMed  Google Scholar 

  54. Mendez-Gonzalez, D., Alonso-Cristobal, P., Lopez-Cabarcos, E., and Rubio-Retama, J., Eur. Polym. J., 2016, vol. 75, no. 11, p. 363. doi https://doi.org/10.1016/j.eurpolymj.2016.01.013

    Article  CAS  Google Scholar 

  55. Sun, S., Zeng, H., Robinson, D.B., Raoux, S., Rice, P.M., Wang, S.X., and Li, G., J. Am. Chem. Soc., 2004, vol. 126, no. 1, p. 273. doi https://doi.org/10.1021/ja0380852

    Article  CAS  PubMed  Google Scholar 

  56. Shin, K.S., Cho, Y.K., Choi, J.Y., and Kim, K., Appl. Catal. (A), 2012, vols. 413–414, p. 170. doi https://doi.org/10.1016/j.apcata.2011.11.006

    Article  CAS  Google Scholar 

  57. Baaziz, W., Pichon, B.P., Fleutot, S., Liu, Y., Lefevre, C., Greneche, J.M., Toumi, M., Mhiri, T., and Begin-Colin, S., J. Phys. Chem. (C), 2014, vol. 118, no. 7, p. 3795. doi https://doi.org/10.1021/jp411481p

    Article  CAS  Google Scholar 

  58. Cozzoli, P.D., Kornowski, A., and Weller, H., J. Am. Chem. Soc., 2003, vol. 125, no. 47, p. 14539. doi https://doi.org/10.1021/ja036505h

    Article  CAS  PubMed  Google Scholar 

  59. Francois, N., Ginzberg, B., and Bilmes, S.A., J. SolGel Sci. Technol., 1998, vol. 13, nos. 1–3, p. 341. doi https://doi.org/10.1023/A:1008628327995

    Article  CAS  Google Scholar 

  60. Choi, H., Stathatos, E., and Dionysiou, D.D., Top. Catal., 2007, vol. 44, no. 4, p. 513. doi https://doi.org/10.1007/s11244-006-0099-1

    Article  CAS  Google Scholar 

  61. Sliem, M.A., Schmidt, D.A., Bétard, A., Kalidindi, S.B., Gross, S., Havenith, M., Devi, A., and Fischer, R.A., Chem. Mater., 2012, vol. 24, no. 22, p. 4274. doi https://doi.org/10.1021/cm301128a

    Article  CAS  Google Scholar 

  62. Krishnan, A., Sreeremya, T.S., and Ghosh, S., RSC Adv., 2016, vol. 6, no. 58, p. 53550. doi https://doi.org/10.1039/c6ra07504e

    Article  CAS  Google Scholar 

  63. Samuel, J., Raccurt, O., Mancini, C., Dujardin, C., Amans, D., Ledoux, G., Poncelet, O., and Tillement, O., J. Nanopart. Res., 2011, vol. 13, no. 6, p. 2417. doi https://doi.org/10.1007/s11051-010-0129-6

    Article  CAS  Google Scholar 

  64. Suganthi, K.S. and Rajan, K.S., Renew. Sustain. Energ. Rev., 2017, vol. 76, p. 226. doi https://doi.org/10.1016/j.rser.2017.03.043

    Article  CAS  Google Scholar 

  65. Cushing, B.L., Kolesnichenko, V.L., and O’Connor, C.J., Chem. Rev., 2004, vol. 104, no. 9, p. 3893. doi https://doi.org/10.1021/cr030027b

    Article  CAS  PubMed  Google Scholar 

  66. Kaasgaard, T. and Drummond, C.J., Phys. Chem. Chem. Phys., 2006, vol. 8, no. 43, p. 4957. doi https://doi.org/10.1039/b609510k

    Article  CAS  PubMed  Google Scholar 

  67. Khadzhiev, S.N., Kadiev, K.M., Yampolskaya, G.P., and Kadieva, M.Kh., Adv. Colloid Interface Sci., 2013, vols. 197–198, p. 132. doi https://doi.org/10.1016/j.cis.2013.05.003

    Article  CAS  PubMed  Google Scholar 

  68. Husein, M.M. and Nassar, N.N., Curr. Nanosci., 2008, vol. 4, no. 4, p. 370. doi https://doi.org/10.2174/157341308786306116

    Article  CAS  Google Scholar 

  69. Heinz, H., Pramanik, C., Heinz, O., Ding, Y., Mishra, R.K., Marchon, D., Flatt, R.J., Estrela-Lopis, I., Llop, J., Moya, S., and Ziolo, R.F., Surf. Sci. Rep., 2017, vol. 72, no. 1, p. 1. doi https://doi.org/10.1016/j.surfrep.2017.02.001

    Article  CAS  Google Scholar 

  70. Ramimoghadam, D., Bagheri, S., and Hamid, S.B.A., Coll. Surf. (B), 2015, vol. 133, p. 388. doi https://doi.org/10.1016/j.colsurfb.2015.02.003

    Article  CAS  Google Scholar 

  71. Nam, J., Won, N., Bang, J., Jin, H., Park, J., Jung Sungwook, Jung Sanghwa, Park, Y., and Kim, S., Adv. Drug Deliv. Rev., 2013, vol. 65, no. 5, p. 622. doi https://doi.org/10.1016/j.addr.2012.08.015

    Article  CAS  PubMed  Google Scholar 

  72. Khimiya privitykh poverkhnostnykh soedinenii (Chemistry of Grafted Surface Compounds), Lisichkin, G.V., Ed., Moscow: Fizmatlit, 2003.

    Google Scholar 

  73. Khabibullin, A., Bhangaonkar, K., Mahoney, C., Lu, Z., Schmitt, M., Sekizkardes, A.K., Bockstaller, M.R., and Matyjaszewski, K., ACS Appl. Mater. Interfaces, 2016, vol. 8, no. 8, p. 5458. doi https://doi.org/10.1021/acsami.5b12311

    Article  CAS  PubMed  Google Scholar 

  74. Tudose, M., Culita, D.C., Musuc, A.M., Somacescu, S., Ghic, C., Chifiriuc, M.C., and Bleotu, C., Mater. Sci. Eng. (C), 2017, vol. 79, p. 499. doi https://doi.org/10.1016/j.msec.2017.05.083

    Article  CAS  Google Scholar 

  75. Gawali, S.L., Barick, B.K., Barick, K.C., and Hassan, P.A., J. Alloys Compd., 2017, vol. 725, p. 800. doi https://doi.org/10.1016/j.jallcom.2017.07.206

    Article  CAS  Google Scholar 

  76. Bagherpour, A.R., Kashanian, F., Ebrahimi, S.A.S., and Habibi-Rezaei, M., Nanotechnology, 2018, vol. 29, no. 7. Art. 075706. doi https://doi.org/10.1088/1361-6528/aaa2b5

  77. Tunusŏglu Ö., Muñoz-Espi, R., Akbey Ü., and Demir, M.M., Colloids Surf. (A), 2012, vol. 395, p. 10. doi https://doi.org/10.1016/j.colsurfa.2011.11.026

    Article  CAS  Google Scholar 

  78. Shi, J., Yang, D., Jiang, Z., Jiang, Y., Liang, Y., Zhu, Y., Wang, X., and Wang, H., J. Nanopart. Res., 2012, vol. 14, no. 9. Art. 1120. doi https://doi.org/10.1007/s11051-012-1120-1

  79. Teleki, A., Bjelobrk, N., and Pratsinis, S.E., Langmuir, 2010, vol. 26, no. 8, p. 5815. doi https://doi.org/10.1021/la9037149

    Article  CAS  PubMed  Google Scholar 

  80. Piskunova, V.S., Novichkov, R.V., and Zuev, B.K., Vestn. Mezhdunar. Univer. “Dubna”, 2018, no. 3, p. 21.

  81. Arévalo-Cid, P., Isasi, J., and Martín-Hernández, F., J. Alloys Compd., 2018, vol. 766, p. 609. doi https://doi.org/10.1016/j.jallcom.2018.06.246

    Article  CAS  Google Scholar 

  82. Masteri-Farahani, M. and Shahsavarifar, S., Appl. Organomet. Chem., 2018, vol. 32, no. 2. Art. e4064. doi https://doi.org/10.1002/aoc.4064

  83. Veisi, H., Vafajoo, S., Bahrami, K., and Mozafari, B., Catal. Lett., 2018, vol. 148, no. 9, p. 2734. doi https://doi.org/10.1007/s10562-018-2486-1

    Article  CAS  Google Scholar 

  84. Teng, Y., Jiang, C., Ruotolo, A., and Pong, P.W.T., IEEE Trans. Nanotechnol., 2018, vol. 17, no. 1, p. 69. doi https://doi.org/10.1109/TNANO.2016.2636254

    Article  CAS  Google Scholar 

  85. Fossati, A.B., Alho, M.M., and Jacobo, S.E., Adv. Natur. Sci: Nanosci. Nanotechnol., 2018, vol. 9, no. 1. Art. 015007. doi https://doi.org/10.1088/2043-6254/aaa6e8

  86. Zhang, M., Qiao, J., and Qi, L., Anal. Chim. Acta, 2018, vol. 1035, p. 70. doi https://doi.org/10.1016/j.aca.2018.07.019

    Article  CAS  PubMed  Google Scholar 

  87. Miola, M., Ferraris, S., Pirani, F., Multari, C., Bertone, E., Rožman, K.Ž., Kostevšek, N., and Verné, E., Ceram. Int., 2017, vol. 43, no. 17, p. 15258. doi https://doi.org/10.1016/j.aca.2018.07.019

    Article  CAS  Google Scholar 

  88. Pombo-García, K., Rühl, C.L., Lam, R., Barreto, J.A., Ang, C.-S., Scammells, P.J., Comba, P., Spiccia, L., Graham, B., Joshi, T., and Stephan, H., ChemPlusChem., 2017, vol. 82, no. 4, p. 638. doi https://doi.org/10.1002/cplu.201700052

    Article  CAS  Google Scholar 

  89. Rodriguez, A.F.R., Costa, T.P., Bini, R.A., Faria, F.S.E.D.V., Azevedo, R.B., Jafelicci, M., Jr., Coaquira, J.A.H., Martinez, M.A.R., Mantilla, J.C., Marques, R.F.C., and Morais, P.C., Physica (B), 2017, vol. 521, p. 141. doi https://doi.org/10.1016/j.physb.2017.06.043

    Article  CAS  Google Scholar 

  90. Kunjie, W., Yanping, W., Hongxia, L., Mingliang, L., Deyi, Z., Huixia, F., and Haiyan, F., J. Rare Earths., 2013, vol. 31, no. 7, p. 709. doi https://doi.org/10.1016/S1002-0721(12)60346-9

    Article  CAS  Google Scholar 

  91. Giaume, D., Poggi, M., Casanova, D., Mialon, G., Lahlil, K., Alexandrou, A., Gacoin, T., and Boilot, J.P., Langmuir, 2008, vol. 24, no. 19, p. 11018. doi https://doi.org/10.1021/la8015468

    Article  CAS  PubMed  Google Scholar 

  92. Klaumünzer, M., Hübner, J., Spitzer, D., and Kryschi, C., ACS Omega, 2017, vol. 2, no. 1, p. 52. doi https://doi.org/10.1021/acsomega.6b00380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Rashwan, K. and Sereda, G., ACS Symp. Ser., 2016, vol. 1224, ch. 5, p. 91. doi https://doi.org/10.1021/bk-2016-1224.ch005

    Article  CAS  Google Scholar 

  94. Fernández, L., Arranz, G., Palacio, L., Soria, C., Sánchez, M., Pérez, G., Lozano, G., Hernández, A., and Prádanos, P., J. Nanopart. Res, 2009, vol. 11, no. 2, p. 341. doi https://doi.org/10.1007/s11051-008-9409-9

    Article  CAS  Google Scholar 

  95. Prado, L.A.S.A., Sriyai, M., Ghislandi, M., Barros-Timmons, A., and Schulte, K., J. Braz. Chem. Soc., 2010, vol. 21, no. 12, p. 2238. doi https://doi.org/10.1590/S0103-50532010001200010

    Article  CAS  Google Scholar 

  96. Hojjati, B. and Charpentier, P.A., J. Polym. Sci. (A), 2008, vol. 46, no. 12, p. 3926. doi https://doi.org/10.1002/pola.22724

    Article  CAS  Google Scholar 

  97. Mallakpour, S. and Ezhieh, A.N., J. Polym. Env., 2018, vol. 26, no. 7, p. 2813. doi https://doi.org/10.1007/s10924-017-1170-7

    Article  CAS  Google Scholar 

  98. Bugrov, A.N., Zavialova, A.Yu., Smyslov, R.Yu., Anan’eva, T.D., Vlasova, E.N., Mokeev, M.V., Kryukov, A.E., Kopitsa, G.P., and Pipich, V. Luminescence, 2018, vol. 33, no. 5, p. 837. doi https://doi.org/10.1002/bio.3476

    Article  CAS  PubMed  Google Scholar 

  99. Gowenlocka, C.E., McGettrickb, J.D., McNaughterc, P.D., O’Brienc, P., Dunnilla, C.W., and Barrona, A.R., Main Group Chem., 2016, vol. 15, no. 1, p. 1. doi https://doi.org/10.3233/MGC-150188

    Article  CAS  Google Scholar 

  100. Ali, M.A., Srivastava, S., Mondal, K., Chavhan, P.M., Agrawal, V.V., John, R., Sharma, A., and Malhotra, B.D., Nanoscale, 2014, vol. 6, no. 22, p. 13958. doi https://doi.org/10.1039/c4nr03791j

    Article  CAS  PubMed  Google Scholar 

  101. Li, H., Yan, Y., Liu, B., Chen, W., and Chen, S., Powder Technol., 2007, vol. 178, no. 3, p. 203. doi https://doi.org/10.1016/j.powtec.2007.04.020

    Article  CAS  Google Scholar 

  102. Kol’tsov, S.I., Zh. Prikl. Khim., 1969, vol. 42, no. 5, p. 1023.

    Google Scholar 

  103. Sosnov, E.A., Malkov, A.A., Malygin, A.A., Russ. Chem. Rev, 2010, vol. 79, no. 10, p. 907. doi https://doi.org/10.1070/RC2010v079n10ABEH004112

    Article  CAS  Google Scholar 

  104. Malygin, A.A., Ross. Khim. Zh., 2013, vol. 57, no. 6, p. 7.

    CAS  Google Scholar 

  105. Watté, J., van Gompel, W.T.M., Lommens, P.L., de Buysser, K., vand an Driessche, I., ACS Appl. Mater. Interface, 2016, vol. 8, no. 43, p. 29759. doi https://doi.org/10.1021/acsami.6b08931

    Article  CAS  Google Scholar 

  106. Panwar, K., Jassal, M., and Agrawal, A.K., Appl. Surf. Sci., 2017, vol. 411, p. 368. doi https://doi.org/10.1016/j.apsusc.2017.03.105

    Article  CAS  Google Scholar 

  107. Guo, Z., Pereira, T., Choi, O., Wang, Y., and Hahn, H.T., J. Mater. Chem., 2006, vol. 16, no. 27, p. 2800. doi https://doi.org/10.1039/b603020c

    Article  CAS  Google Scholar 

  108. Razali, W.A.W., Sreenivasan, V.K.A., Goldys, E.M., and Zvyagin, A.V., Langmuir, 2014, vol. 30, no. 50, p. 15091. doi https://doi.org/10.1021/la5042629

    Article  CAS  PubMed  Google Scholar 

  109. Melnyk, I.V., Pogorilyi, R.P., Zub, Y.L., Vaclavikova, M., Gdula, K., Dąprowski, A., Seisenbaeva, G.A., and Kessler, VG., Sci. Rep., 2018, vol. 8, no. 1. Art. 8592. doi https://doi.org/10.1038/s41598-018-26767-w

  110. Li, L., Guo, R., Li, Y., Guo, M., Wang, X., and Du, X., Anal. Chim. Acta, 2015, vol. 867, p. 38. doi https://doi.org/10.1016/j.aca.2015.01.038

    Article  CAS  PubMed  Google Scholar 

  111. Toiserkani, H., Coll. Polym. Sci., 2015, vol. 293, no. 10, p. 2911 doi https://doi.org/10.1007/s00396-015-3691-8

    Article  CAS  Google Scholar 

  112. Qi, L., Sehgal, A., Castaing, J.C., Chapel, J.P., Fresnais, J., Berret, J.F., and Cousin, F., ACS Nano, 2008, vol. 2, no. 5, p. 879. doi https://doi.org/10.1021/nn700374d

    Article  CAS  PubMed  Google Scholar 

  113. Meng, C., Zhikun, W., Qiang, L., Chunling, L., Shuangqing, S., and Songqing, H., J. Hazard. Mater., 2018, vol. 341, p. 198. doi https://doi.org/10.1016/j.jhazmat.2017.07.062

    Article  CAS  PubMed  Google Scholar 

  114. Ledwa, K.A. and Kępínski, L., Appl. Surf. Sci., 2017, vol. 400, p. 212. doi https://doi.org/10.1016/j.apsusc.2016.12.127

    Article  CAS  Google Scholar 

  115. Zhang, Q., Nurumbetov, G., Simula, A., Zhu, C., Li, M., Wilson, P., Kempe, K., Yang, B., Tao, L., and Haddleton, D.M., Polym. Chem., 2016, vol. 7, no. 45, p. 7002. doi https://doi.org/10.1039/c6py01709f

    Article  CAS  Google Scholar 

  116. Zhang, S., Zhang, Y., Liu, J., Xu, Q., Xiao, H., Wang, X., Xu, H., and Zhou, J., Chem. Eng. J., 2013, vol. 226, p. 30. doi https://doi.org/10.1016/j.cej.2013.04.060

    Article  CAS  Google Scholar 

  117. Wang, H., Zhao, X., Meng, W., Wang, P., Wu, F., Tang, Z., Han, X., and Giesy, J.P., Anal. Chem., 2015, vol. 87, no. 15, p. 7667. doi https://doi.org/10.1021/acs.analchem.5b01077

    Article  CAS  PubMed  Google Scholar 

  118. Ashour, R.M., El-sayed, R., Abdel-Magied, A.F., Abdel-Khalek, A.A., Ali, M.M., Forsberg, K., Uheida, A., Muhammed, M., and Dutta, J., Chem. Eng. J., 2017, vol. 327, p. 286. doi https://doi.org/10.1016/j.cej.2017.06.101

    Article  CAS  Google Scholar 

  119. Jin, X., Li, K., Ning, P., Bao, S., and Tang, L., Water Air Soil Pollut, 2017, vol. 228, no. 8. Art. 302. doi https://doi.org/10.1007/s11270-017-3482-6

  120. Zhu, S., Leng, Y., Yan, M., Tuo, X., Yang, J., Almásy, L., Tian, Q., Sun, G., Zou, L., Li, Q., Courtois, J., and Zhang, H., Appl. Surf. Sci., 2018, vol. 447, p. 381. doi https://doi.org/10.1016/j.apsusc.2018.04.016

    Article  CAS  Google Scholar 

  121. Veliscek-Carolan, J., Jolliffe, K.A., and Hanley, T.L., ACS Appl. Mater. Interfaces, 2013, vol. 5, no. 22, p. 11984. doi https://doi.org/10.1021/am403727x

    Article  CAS  PubMed  Google Scholar 

  122. Zohreh, N., Hosseini, S.H., Tavakolizadeh, M., Busuioc, C., and Negrea, R., J. Mol. Liq., 2018, vol. 266, p. 393. doi https://doi.org/10.1016/j.molliq.2018.06.076

    Article  CAS  Google Scholar 

  123. Khodaei, M.M. and Dehghan, M., New J. Chem, 2018, vol. 42, no. 14, p. 11381. doi https://doi.org/10.1039/c8nj00781k

    Article  CAS  Google Scholar 

  124. Miao, C., Yang, L., Wang, Z., Luo, W., Li, H., Lv, P., and Yuan, Z., Fuel, 2018, vol. 224, p. 774. doi https://doi.org/10.1016/j.fuel.2018.02.149

    Article  CAS  Google Scholar 

  125. Fu, C., Yang, R.M., Wang, L., Li, N.N., Qi, M., Xu, X.D., Wei, X.H., Jiang, X.Q., and Zhang, L.M., RSC Adv., 2017, vol. 7, no. 66, p. 41919. doi https://doi.org/10.1039/c7ra05042a

    Article  CAS  Google Scholar 

  126. Yazici, H., Alpaslan, E., and Webster, T.J., J. Miner., 2015, vol. 67, no. 4, p. 804. doi https://doi.org/10.1007/s11837-015-1336-5

    CAS  Google Scholar 

  127. Tran, P.A., Nguyen, H.T., Fox, K., and Tran, N., Mater. Res. Exp., 2018, vol. 5, no. 3, p. Art. 035051. doi https://doi.org/10.1088/2053-1591/aab5f3

  128. Cano, M., Núñez-Lozano, R., Lumbreras, R., González-Rodríguez, V., Delgado-García, A., Jiménez-Hoyuela, J.M., and de la Cueva-Méndez, G., Nanoscale, 2017, vol. 9, no. 2, p. 812. doi https://doi.org/10.1039/c6nr07462f

    Article  CAS  PubMed  Google Scholar 

  129. Li, X., Garamus, V.M., Li, N., Gong, Y., Zhe, Z., Tian, Z., and Zou, A., Coll. Surf. (A), 2018, vol. 548, p. 61. doi https://doi.org/10.1016/j.colsurfa.2018.03.047

    Article  CAS  Google Scholar 

  130. Orza, A., Wu, H., Xu, Y., Lu, Q., and Mao, Q., ACS Appl. Mater. Interfaces, 2017, vol. 9, no. 24, p. 20719. doi https://doi.org/10.1021/acsami.7b02575

    Article  CAS  PubMed  Google Scholar 

  131. Aghanejad, A., Babamiri, H., Adibkia, K., Barar, J., and Omidi, Y., BioImpacts, 2018, vol. 8, no. 2, p. 117. doi https://doi.org/10.15171/bi.2018.14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Buliaková, B., Mesárošová, M., Bábelová, A., Šelc, M., Némethová, V., Šebová, L., Rázga, F., Ursínyová, M., Chalupa, I., and Gábelová, A., Nanomed. Nanotechnol. Biol. Med., 2017, vol. 13, no. 1, p. 69. doi https://doi.org/10.1016/j.nano.2016.08.027

    Article  CAS  Google Scholar 

  133. Mohanta, S.C., Saha, A., and Devi, P.S., Mater. Today Proc., 2018, vol. 5, no. 3, pt. 3, p. 9715. doi https://doi.org/10.1016/j.matpr.2017.10.158

    Article  CAS  Google Scholar 

  134. Schlipf, D.M., Jones, C.A., Armbruster, C.A., Rushing, E.S., Wooten, K.C., Rankin, S.E., and Knutson, B.L., Coll. Surf. (A), 2015, vol. 478, p. 15. doi https://doi.org/10.1016/j.colsurfa.2015.03.039

    Article  CAS  Google Scholar 

  135. Yasmin, Z., Zhang, M., Gorski, W., Maswadi, S., Glickman, R., and Nash, K.L., Mater. Res. Soc. Symp. Proc., 2012, vol. 1471, p. 18. doi https://doi.org/10.1557/opl.2012.1076

    Article  CAS  Google Scholar 

  136. Nosrati, H., Salehiabar, M., Manjili, H.K., Danafar, H., and Davaran, S., Int. J. Biol. Macromol., 2018, vol. 108, p. 909. doi https://doi.org/10.1016/j.ijbiomac.2017.10.180

    Article  CAS  PubMed  Google Scholar 

  137. Atacan, K., Çakıroğlu, B., and Özacar, M., Int. J. Biol. Macromol., 2017, vol. 97, p. 148. doi https://doi.org/10.1016/j.ijbiomac.2017.01.023

    Article  CAS  PubMed  Google Scholar 

  138. Nhavene, E.P.F., da Silva, W.M., Trivelato, R.R. Jr., Gastelois, P.L., Venâncio, T., Nascimento, R., Batista, R.J.C., Machado, C.R., Macedo, W.A.A., and de Sousa, E.M.B., Micropor. Mesopor. Mater, 2018, vol. 272, p. 265. doi https://doi.org/10.1016/j.micromeso.2018.06.035

    Article  CAS  Google Scholar 

  139. Wang, L., Yang, Z., Gao, J., Xu, K., Gu, H., Zhang, B., Zhang, X., and Xu, B., J. Am. Chem. Soc., 2006, vol. 128, no. 41, p. 13358. doi https://doi.org/10.1021/ja0651355

    Article  CAS  PubMed  Google Scholar 

  140. Ehrlich, G.V and Lisichkin, G.V., Russ. J. Gen. Chem., 2017, vol. 87, no. 6, p. 1220. doi https://doi.org/10.1134/S1070363217060196

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Olenin.

Additional information

Russian Text © The Author(s), 2019, published in Zhurnal Obshchei Khimii, 2019, Vol. 89, No. 7, pp. 1101–1129.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olenin, A.Y., Lisichkin, G.V. Surface-Modified Oxide Nanoparticles: Synthesis and Application. Russ J Gen Chem 89, 1451–1476 (2019). https://doi.org/10.1134/S1070363219070168

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363219070168

Keywords

Navigation