Skip to main content
Log in

Synthesis and characterization of spherical silica nanoparticles by modified Stöber process assisted by slow-hydrolysis catalyst

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

We demonstrate the synthesis of spherical silica nanoparticles via a facile method based on the modified Stöber process for reacting tetraethyl orthosilicate with a slow hydrolysis catalyst in water. Analyses by Fourier-transform infrared spectroscopy and energy dispersive X-ray spectroscopy indicated that the products were pure silica after calcination at 800 °C for 10 h. The amorphous natures of the products were verified by X-ray and electron diffraction. Transmission electron microscopy observations revealed that the amorphous silica nanoparticles were dispersed and fine in size. The average particle sizes and particle size distributions of the amorphous silica nanoparticles could be controlled by adjusting the type of the slow hydrolysis catalyst. Dispersed spherical silica nanoparticles with average particle sizes ranging from 13 to 32 nm were synthesized successfully.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Iler RK (1978) The chemistry of silica. Wiley, New York

    Google Scholar 

  2. Brinker CJJ (1988) Hydrolysis and condensation of silicates: effects on structure. J Non-Cryst Solids 100(1-3):31–50. https://doi.org/10.1016/0022-3093(88)90005-1

    Article  CAS  Google Scholar 

  3. Brinker CJJ, Scherer GW (1990) Sol-gel science. Elsevier, Amsterdam

    Google Scholar 

  4. Henglein A (1989) Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem Rev 89(8):1861–1873. https://doi.org/10.1021/cr00098a010

    Article  CAS  Google Scholar 

  5. Averback RS, Höfler HJ, Tao R (1993) Processing of nano-grained materials. Mater Sci Eng 166(1-2):169–177. https://doi.org/10.1016/0921-5093(93)90320-E

    Article  Google Scholar 

  6. Galembeck F, Lima ECO, Masson NC, Monteiro VAR, Souza EF (1996) Polyphosphate nanoparticles and gels. In: Pelizzetti E (ed) Fine particles science and technology: from micro to nanoparticles. Kluwer, Dordrecht, pp 267–279. https://doi.org/10.1007/978-94-009-0259-6_20

    Chapter  Google Scholar 

  7. Kim YH, Lee DK, Cha HG, Kim CW, Kang YC, Kang YS (2006) Preparation and characterization of the antibacterial Cu nanoparticle formed on the surface of SiO2 nanoparticles. J Phys Chem B 110(49):24923–24928. https://doi.org/10.1021/jp0656779

    Article  CAS  Google Scholar 

  8. Napierska D, Thomassen LCJ, Rabolli V, Lison D, Gonzalez L, Kirsch-Volders M, Martens JA, Hoet PH (2009) Size-dependent cytotoxicity of monodisperse silica nanoparticles in human endothelial cells. Small 5(7):846–853. https://doi.org/10.1002/smll.200800461

    Article  CAS  Google Scholar 

  9. Gleiter H, Schimmel T, Hahn H (2014) Nanostructured solids – from nano-glasses to quantum transistors. Nano Today 9(1):17–68. https://doi.org/10.1016/j.nantod.2014.02.008

    Article  CAS  Google Scholar 

  10. Stoesser A, Ghafari M, Kilmametov A, Gleiter H, Sakurai Y, Itou M, Kohara S, Hahn H, Kamali S (2014) Influence of interface on structure and magnetic properties of Fe50B50 nanoglass. J Appl Phys 116(13):134305. https://doi.org/10.1063/1.4897153

    Article  Google Scholar 

  11. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interf Sci 26(1):62–69. https://doi.org/10.1016/0021-9797(68)90272-5

    Article  Google Scholar 

  12. Guo Q, Huang D, Kou X, Cao W, Li L, Ge L, Li J (2017) Synthesis of disperse amorphous SiO2 nanoparticles via sol–gel process. Ceram Int 43(1):192–196. https://doi.org/10.1016/j.ceramint.2016.09.133

    Article  CAS  Google Scholar 

  13. Razi F, Zinatloo-Ajabshir S, Salavati-Niasari M (2017) Preparation and characterization of HgI2 nanostructures via a new facile route. Mater Lett 193:9–12. https://doi.org/10.1016/j.matlet.2017.01.095

    Article  CAS  Google Scholar 

  14. Mousavi SA, Hassanpour M, Salavati-Niasari M, Safardoust-Hojaghan H, Hamadanian M (2017) Dy2O3/CuO nanocomposites: microwave assisted synthesis and investigated photocatalytic properties. J Mater Sci: Mater Electron. https://doi.org/10.1007/s10854-017-8026-8

  15. Zinatloo-Ajabshir S, Salavati-Niasari M (2016) Preparation of nanocrystalline cubic ZrO2 with different shapes via a simple precipitation approach. J Mater Sci Mater Electron 27(4):3918–3928. https://doi.org/10.1007/s10854-015-4243-1

    Article  CAS  Google Scholar 

  16. Zinatloo-Ajabshir S, Zinatloo-Ajabshir Z, Salavati-Niasari M, Bagheri S, Hamid SBA (2017) Facile preparation of Nd2Zr2O7 –ZrO2 nanocomposites as an effective photocatalyst via a new route. J Nat Gas Chem 26:315–323

    Google Scholar 

  17. Zinatloo-Ajabshir S, Salavati-Niasari M (2017) Photo-catalytic degradation of erythrosine and eriochrome black T dyes using Nd2Zr2O7 nanostructures prepared by a modified Pechini approach. Sep Purif Technol 179:77–85. https://doi.org/10.1016/j.seppur.2017.01.037

    Article  CAS  Google Scholar 

  18. Zinatloo-Ajabshir S, Salavati-Niasari M, Zinatloo-Ajabshir Z (2016) Nd2Zr2O7-Nd2O3 nanocomposites: new facile synthesis, characterization and investigation of photocatalytic behavior. Mater Lett 180:27–30. https://doi.org/10.1016/j.matlet.2016.05.094

    Article  CAS  Google Scholar 

  19. Shaikh FI, Chikhale LP, Patil JY, Mulla IS, Suryavanshi SS (2017) Enhanced acetone sensing performance of nanostructured Sm2O3 doped SnO2 thick films. J Rare Earth 35(8):813–823. https://doi.org/10.1016/S1002-0721(17)60981-5

    Article  CAS  Google Scholar 

  20. Zinatloo-Ajabshir S, Mortazavi-Derazkola S, Salavati-Niasari M (2017) Simple sonochemical synthesis of Ho2O3-SiO2 nanocomposites as an effective photocatalyst for degradation and removal of organic contaminant. Ultrason Sonoche 39:452–460. https://doi.org/10.1016/j.ultsonch.2017.05.016

    Article  CAS  Google Scholar 

  21. Zinatloo-Ajabshir S, Mortazavi-Derazkola S, Salavati-Niasari M (2017) Sono-synthesis and characterization of Ho2O3 nanostructures via a new precipitation way for photocatalytic degradation improvement of erythrosine. Int J Hydrogen Energ 42(22):15178–15188. https://doi.org/10.1016/j.ijhydene.2017.04.252

    Article  CAS  Google Scholar 

  22. Yokoi T, Sakomoto Y, Terasaki O, Kubota Y, Okubo T, Tatsumi T (2006) Periodic arrangement of silica nanospheres assisted by amino acids. J Am Chem Soc 128(42):13664–13665. https://doi.org/10.1021/ja065071y

    Article  CAS  Google Scholar 

  23. Davis TM, Snyder MA, Krohn JE, Tsapatsis M (2006) Nanoparticles in lysine–silica sols. Chem Mater 18(25):5814–5816. https://doi.org/10.1021/cm061982v

    Article  CAS  Google Scholar 

  24. Yuvakkumara R, Rajendrana V, Kannanb N (2014) High-purity nano silica powder from rice husk using a simple chemical method. J Exp Nanosci 9(3):272–281. https://doi.org/10.1080/17458080.2012.656709

    Article  Google Scholar 

  25. Naka Y, Komori Y, Yoshitake H (2010) One-pot synthesis of organo-functionalized monodisperse silica particles in W/O microemulsion and the effect of functional groups on addition into polystyrene. Colloid Surface A 361(1-3):162–168. https://doi.org/10.1016/j.colsurfa.2010.03.034

    Article  CAS  Google Scholar 

  26. Hartlen KD, Athanasopoulos APT, Kitaev V (2008) Facile preparation of highly monodisperse small silica spheres (15 to >200 nm) suitable for colloidal templating and formation of ordered arrays. Langmuir 24(5):1714–1720. https://doi.org/10.1021/la7025285

    Article  CAS  Google Scholar 

  27. Bogush GH, Tracy MA, Zukoski CF (1988) Preparation of monodisperse silica particles: control of size and mass fraction. J Non-Cryst Solids 104(1):95–106. https://doi.org/10.1016/0022-3093(88)90187-1

    Article  CAS  Google Scholar 

  28. Wang YD, Ma CL, Sun XD, Li HD (2003) Synthesis and characterization of amorphous TiO2 with wormhole-like framework mesostructure. J Non-Cryst Solids 319(1-2):109–116. https://doi.org/10.1016/S0022-3093(02)01956-7

    Article  CAS  Google Scholar 

  29. Gholami T, Salavati-Niasari M, Bazarganipour M, Noori E (2013) Synthesis and characterization of spherical silica nanoparticles by modified Stöber process assisted by organic ligand. Superlattice Microst 61:33–41. https://doi.org/10.1016/j.spmi.2013.06.004

    Article  CAS  Google Scholar 

  30. Pradhan S, Chen S, Zou J, Kauzlarich SM (2008) Photoconductivity of langmuir–blodgett monolayers of silicon nanoparticles. J Phys Chem C 112(34):13292–13298. https://doi.org/10.1021/jp8044719

    Article  CAS  Google Scholar 

  31. Carcouet CCMC, Put MWP, Mezari B, Magusin PCMM, Laven J, Bomans PHH, Friedrich H, Esteves ACC, Sommerdijk NAJM, Benthem RATM, With G (2014) Nucleation and growth of monodisperse silica nanoparticles. Nano Lett 14(3):1433–1438. https://doi.org/10.1021/nl404550d

    Article  CAS  Google Scholar 

  32. Martin ST, Morrison CL, Hoffmann MR (1994) Photochemical mechanism of size-quantized vanadium-doped TiO2 particles. J Phys Chem Lett 98:13695–13704

    CAS  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (grant no. 51272098).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Q., Yang, G., Huang, D. et al. Synthesis and characterization of spherical silica nanoparticles by modified Stöber process assisted by slow-hydrolysis catalyst. Colloid Polym Sci 296, 379–384 (2018). https://doi.org/10.1007/s00396-017-4260-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-017-4260-0

Keywords

Navigation