Skip to main content

Advertisement

Log in

An insight into the structural, electrical and optical properties of SnO 2 nanoparticles

  • Review Paper: Educational aspects of sol-gel and hybrid materials
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Non stoichiometric SnO2 nanoparticles form an important class of materials which is a wide gap (̴ 3.64 eV), transparent, n-type semiconductor. It has a wide range of applications in the field of optics, electronics and catalysis. In this review article some reports on structural, electrical and optical aspects of these materials (pure and doped) have been discussed in detail. Results from XRD, SEM, TEM, and electron diffraction patterns have shown the structural features of these SnO2 nanoparticles. Electrical properties have been discussed with respect to carrier concentration and carrier mobility that ultimately effects the conductance in these materials. Particle size also play an important role. Optical properties are determined by direct energy band gap between conduction and valence band. Results from UV-vis spectroscopy (absorption, reflectance and transmittance) show the actual band gap in these materials. Direct measurement of the bad gap (Eg) from the intercept of the energy axis in Tauc Plots, show its dependence on the type of dopant and its concentration and also on particle size.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Weinberg ZA, Rubloff GW, Bassous E (1979) Phys Rev B 19:3107–3117

    Article  Google Scholar 

  2. Afify HH, Momtaz RS, Badavy WA, Nasser SA (1991) J Mater Sci Mater Electron 2:40–45

    Article  Google Scholar 

  3. Gamard A, Jousseaume B, Toupance T, Campet G (1999) Inorg Chem 38:4671–4679

    Article  Google Scholar 

  4. Fortunato E, Ginley D, Hosono H, Paine DC (2007) MRS Bull 32:242–247

    Article  Google Scholar 

  5. Singh H, Gokhale AM, Tewari A, Zhang S, Mao Y (2009) Scr Mater 61:441–444

    Article  Google Scholar 

  6. Suzuki H, Usami N, Nomura A, Shishido T, Nakajima K, Suemasu T (2010) J Cryst Growth 312:3257–3260

    Article  Google Scholar 

  7. Malik MA, Afzal M, O’Brien P (2010) Chem Rev 110:4417–4446

    Article  Google Scholar 

  8. Handbook of Nano Science. Engineering & Technology, Edited By Goddard WA III, Brenner DW, Lyshevski SE, Lafrate GJ CRC Press, 2012 by Taylor & Francis Group, ISBN 13: 978-1-4398-6016-8

  9. Vinardell MP, Mitjans M (2015) Nanomaterials 5:1004–1021

    Article  Google Scholar 

  10. Sharma N, Ojha H, Bhardwaj A, Pathak DP, Sharma RK (2015) RSC Adv 5:53381–53403

    Article  Google Scholar 

  11. Irvine DJ, Hanson MC, Takhra K, Pokatuan T (2015) Chem Rev 115:11109–11146

    Article  Google Scholar 

  12. Lee S, Kim YW, Chen H (2001) Appl Phys Lett 78:350–352

    Article  Google Scholar 

  13. Kuang Q, jiang Z-Y, Xie Z-X, Lin S-C, Lin Z-W, Xie S-Y, Huang R-B, Zheng L-S (2005) J Am Chem Soc 127:11777–11784

    Article  Google Scholar 

  14. Kar A, Patra A (2009) J.Phys Chem C 113(11):4375–4380

    Article  Google Scholar 

  15. Cheng C, Liu B, Yang H, Zhou W, Sun L, Chen R, Yu SF, Zhang J, Gong H, Sun H, Fan HJ (2009) ACS Nano 3:3069–3076

    Article  Google Scholar 

  16. Sarmah S, Kumar A (2010) Indian J Phys 84:1211–1221

    Article  Google Scholar 

  17. Peng Z, Shi Z, Liu M (2000) Chem. Commun. 2125–2126.

  18. Zhao Q, Ma L, Zhang Q, Wang C, Xu X (2014) J. Nanomater 2015:1–15

    Google Scholar 

  19. Guillén C, Herrero J (2011) Thin Solid Films 520:1–17

    Article  Google Scholar 

  20. Mueller F, Bresser D, Chakravadhanula VSK, Passerini S (2015) J Power Sour 299:398–402

    Article  Google Scholar 

  21. Sharma A, Tomar M, Gupta V (2013) Sens Actuators B Chem 181:735–742

    Article  Google Scholar 

  22. Kadhim IH, Hassan HA, Abdullah QN (2016) Nano Micro lett 8:20–28

    Article  Google Scholar 

  23. Qian J, Liu P, Xiao Y, Jiang Y, Cao Y, Ai X, Yang H (2009) Adv Mater 21:3663–3667

    Article  Google Scholar 

  24. Tiwana P, Docampo P, Johnston MB, Snaith HJ, Herz LM (2011) ACS Nano 5(6):5158–5166

    Article  Google Scholar 

  25. DesaiUV XuC, Wu J, Gao D (2013) J Phys Chem C 117(7):3232–3239

    Article  Google Scholar 

  26. Fallah NS, Makhtary M (2015) J Taibah Univ Sci 9:531–537

    Article  Google Scholar 

  27. Haneda N, Ota Y, Doi Y, Hattori M (2016) J Mater Sci 51(24):10949–10959

    Article  Google Scholar 

  28. Liu Y, Koep E, Liu M (2005) Chem Meter 17(15):3997–4000

    Article  Google Scholar 

  29. Wu S, Kao H, Yin S, Liu X, Zhang X (2009) J Phys Chem C 113(41):17893–17898

    Article  Google Scholar 

  30. Wang Y-d, Ma C-l, Sun X-d, Li H-d (2002) Nanotehnology 13(5):565–569

    Article  Google Scholar 

  31. Bhagwat AD, Sawant SS, Ankamwar BG, Mahajan CM (2015) J Nano Electron Phys 7(4):4037. 4pp

    Google Scholar 

  32. Luo H, Lian LY, Kao HT, Liu ZM, Zhuge F (2012) ACS Appl Mater Interface 4(10):5673–5677

    Article  Google Scholar 

  33. Bendjedidi H, Attaf A, Saidi H, Aida MS, Semmari S, Bouhdjar A, Benkhetta Y (2015) J Semicond 36(12):123002. 1–4

    Article  Google Scholar 

  34. Agrawal S, Sharma V, Bohra R (2006) J Chem Res 7:426–430.

  35. Sharma N, Sharma V, Bohra R, Raju VS (2007) Appl Org Met Chem 21:763–771

    Article  Google Scholar 

  36. Sharma N, Sharma V, Bohra R, Raju VS, Lorenz I-P, Krinninger C, Mayer P (2007) Inorg Chim Acta 360:3002–3012

    Article  Google Scholar 

  37. Dhayal V, Sharma N, Sharma V, Bohra R, Drake JE, McDonald CLB (2007) Polyhedron 26:3168–3174

    Article  Google Scholar 

  38. Mishra S, Daniele S (2015) Chem Rev 115:8379–8448

    Article  Google Scholar 

  39. Nütz T, Haase M (2000) J Phys Chem B 104:8430–8437

    Article  Google Scholar 

  40. Thangaraju B (2002) Thin Solid Film 402:71–78

    Article  Google Scholar 

  41. Gordillo G, Moreno LC, de la Cruz W, Tehran P (1994) Thin Solid Flim 252:61–66

    Article  Google Scholar 

  42. Ganjali M, Ganjali M, Hassanjani – Roshan A, Kazemzadeh SM (2014) J Adv Mater Process 2:13–20

    Google Scholar 

  43. Patil GE, Kajale DD, Gaikwad VB, Jain GH (2012) Int Nano Lett 2:46–51

    Article  Google Scholar 

  44. Naje AN, Norry AS, Suhail AM (2013) Int J Innov Res Sci Eng Technol 2:7068–7072

    Google Scholar 

  45. He Z, Zhou J (2013) Mod Res Catal 2:13–18

    Article  Google Scholar 

  46. Blessi S, Sonia MML, Vijayalakshmi S, Pauline S (2014) Int J Chem Tech Res. 6(3):2153–2155

    Google Scholar 

  47. Thenmozhi C, Manivannan V, Kumar E, Veera Rethina Murugan S (2015) Int Res J Eng Technol 2:2634–2640

    Google Scholar 

  48. Gu F, Wang SF, Song CF, Leu MK, Qi YX, Zhou GJ, Xu D, Yuan DR (2003) Chem Phys Lett 372:451–454

    Article  Google Scholar 

  49. Anandan K, Rajendran V (2010) J Non Oxide Glass 2:83–89

    Google Scholar 

  50. Baker PGL, Sanderson RD, Crouch AM (2007) Thin Solid Film 515:6691–6697

    Article  Google Scholar 

  51. Gupta P, Vyas R, Choudhary BL, Sachdev K, Patil DS, Sharma SK (2013) Int J Mod Phys 22:452–457

    Google Scholar 

  52. Rozati SM, Shadmani E (2011) Dig J Nanomater Bio Struct 6(2):365–372

    Google Scholar 

  53. Bargougui R, Oueslati A, Schmerber G, Ulhaq-Bouillet C, Colis S, Hlel F, Ammar S, Dinia A (2014) J Mater Sci Mater Electron 25:2066–2071

    Article  Google Scholar 

  54. Terrier C, Chatelon JP, Roger JA (1997) Thin Solid Film 295:95–100

    Article  Google Scholar 

  55. Banyamin ZY, Kelly PJ, West G, Boardman J (2014) Coatings 4:732–746

    Article  Google Scholar 

  56. Kim H, Auyeung RCY, Pique A (2008) Thins Solid Film 516:5052–5056

    Article  Google Scholar 

  57. Bilgin V, Akyuz I, Ketenci E, Kose S, Atay F (2010) Appl Surf Sci 256:6586–6591

    Article  Google Scholar 

  58. Sudhaparimala S, Gnanamani A, Mandal AB (2014) Am J Nanosci Nanotechnol 2(4):75–83

    Article  Google Scholar 

  59. Sagadevan S, Podder J (2015) Soft Nanosci Lett 5:55–64

    Article  Google Scholar 

  60. Sagadevan S, Podder J (2016) Mater Res 19(2):420–425

    Article  Google Scholar 

  61. Vedivel K, Arivazhagan V, Rajesh S (2011) Int J Appl Eng Res 1(4):492–498

    Google Scholar 

  62. Kuppam M, Kaleemulla S, Rao NM, Krishna NS, Begum MR, Shobana M (2014) Adv Condens Matter Phys 2014 Article ID 284237, 5

  63. Dalui S, Rout S, Silvestre AJ, Lavareda G, Pereira LCJ, Brogueira P, Conde O (2013) Appl Surf Sci 278:127–131

    Article  Google Scholar 

  64. Mani R, Vivekanandan K, Vallalperuman K (2017) J Mater Sci Mater Electron 28(5):4396–4402

    Article  Google Scholar 

  65. Al- Janaby AZ, Al-Jumaili HS (2016) Int Res J Eng Technol 3(3):40–45

    Google Scholar 

  66. Tan R-q, Guo Y-q, Zhao J-h, Li Y, Xu T-f, Song W-j (2011) Trans Nonferrous Met Soc China 21:1568–1573

    Article  Google Scholar 

  67. Shen Y, Yamazaki T, Liu Z, Meng D, Kikuta T (2009) J Alloy Compd 488:L21–L25

    Article  Google Scholar 

  68. Wang S-r ZhaoY-q, Huang J, Wang Y, Ren H-x, Wu S-h, Zhang S-m, Huang W-p (2007) Appl Surf Sci 253:3057–3061

    Article  Google Scholar 

  69. Ramgir NS, Mulla IS, Vijaymohanan KP (2005) Sens Actuators B 107:708–715

    Article  Google Scholar 

  70. Asar T, Korkmaz B, Özçelik S (2016) J Exp Nanosci 11:1285–1306

    Article  Google Scholar 

  71. Dawar AL, Joshi JC (1984) J Mater Sci 19:1–23

    Article  Google Scholar 

  72. Fonstad CG, Rediker RH (1971) J Appl Phys 42:2911–2915

    Article  Google Scholar 

  73. Stjerna B, Olsson E, Granqvist CG (1994) J Appl Phys 76:3797–3800

    Article  Google Scholar 

  74. Sanjines R, Demarne V, Levy F (1990) Thin Solid Film 193/194:935–942

    Article  Google Scholar 

  75. Parthibavarman M, Hariharan V, Sekar C, Singh VN (2010) J Optoelectro Adv Mater 12(9):1894–1898

    Google Scholar 

  76. Orliukas A, Dindune A, Kenepe Z, Ronis J, Kazakevicius E, Kezionis A (2003) Solid State Ion 157:177–181

    Article  Google Scholar 

  77. Subba Ramaiah K, Sundara Raja V (2006) Appl Surf Sci 253:1451–1458

    Article  Google Scholar 

  78. Bhuvneshwari PV, Veluswamy P, Babu RR, Babu SM, Ramamurthi K, Arivanandhan M (2013) Mater Sci Semicond Proc 16:1964–1970

    Article  Google Scholar 

  79. Kim C-Y, Riu D-H (2011) Thin Solid Film 519:3081–3085

    Article  Google Scholar 

  80. Elangovan E, Ramamurthi K (2005) Thin Solid Film 476:231–236

    Article  Google Scholar 

  81. Suresh S (2015) J Nano Res 34:91–97

    Article  Google Scholar 

  82. Berenguer R, Quijada C, Morallon E (2009) Electrochim Acta 54(22):5230–5238

    Article  Google Scholar 

  83. Frank G, Kauer E, Köstlin H (1981) Thin Solid Film 77:107–118

    Article  Google Scholar 

  84. Hamburg I, Granqvist CG (1986) J Appl Phys 60:R123–R160

    Article  Google Scholar 

  85. Henglein A (1993) J Phys Chem 97(21):5457–5471

    Article  Google Scholar 

  86. Zhou F, Kang K, Maxisch T, Ceder G, Morgan D (2004) Solid State Commun 132(3):181–186

    Article  Google Scholar 

  87. Morales AE, Mora ES, Pal E (2007) Rev mexic De Fisicas 53:18–22

    Google Scholar 

  88. Tauc J, Grigorovici R, Vancu A (1966) Phys Status Solidi (b) 15:627–637

    Article  Google Scholar 

  89. Gnanam S, Rajendran V (2010) Dig J Nanomater Biostruct 5:699–704

    Google Scholar 

  90. Arefi-Khonsari F, Bauduin N, Donsanti F, Amouroux J (2003) Thin Solid Film 427:208–214

    Article  Google Scholar 

  91. Park YR, Kim KJ (2003) J Appl Phys 94(10):6401–6404

    Article  Google Scholar 

  92. Odari BV, Mageto M, Musembi R, Othieno H, Gaitho F, Muramba V (2013) Aust J Basic Appl Sci 7(2):89–98

    Google Scholar 

Download references

Acknowledgements

Financial support from UGC, New Delhi (F. MS-37/304004/XII/13-14/CRO dated 19 January 2015) is highly acknowledged. Special thanks and acknowledgement goes to the contributing authors of the research papers for making this review article more informative and explanatory with the help of figures provided by them.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinita Sharma.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, V. An insight into the structural, electrical and optical properties of SnO 2 nanoparticles. J Sol-Gel Sci Technol 84, 231–238 (2017). https://doi.org/10.1007/s10971-017-4507-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-017-4507-8

Keywords

Navigation