Skip to main content
Log in

Assessment of biological effects in Plantago major L. Seed progeny in the zone of impact from a Copper Smelter

  • Published:
Russian Journal of Ecology Aims and scope Submit manuscript

Abstract

The quality of seed progeny was studied in Plantago major from populations growing for a long time in the gradient of chemical pollution around the Karabash Copper Smelter (KCS). The results showed that the range of variation in seed germination and seedling survival rates was wider in background than in impact populations. The lowest values of growth parameters (the number of seedlings with a true leaf and root length) were recorded in the sample from the most polluted plot. Challenging exposure to toxic elements (seed germination in soils from polluted plots) was found to stimulate, to different extents, the rate of leaf formation and suppress root growth in the seedlings. It cannot be stated from these results that the adaptive potential of plants grown in the zone of impact from the KCS is altered, compared to that in other samples. Evaluation of the prooxidant and antioxidant status of seedlings from this zone revealed a decrease in superoxide dismutase and catalase activities (to 60 and 33% of background values, respectively) and an increase in peroxidase activity (to 122%). The prooxidant status of seedlings in samples from the KCS zone was found to be increased, except for the sample from the most polluted plot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cox, R.M., Air pollution effects on plant reproductive processes and possible consequences to their population biology, in Air Pollution Effects on Biodiversity, Barker, J.R. and Tingey, D.T., Eds., New York: Van Nostrand Reinhold, 1992, pp. 131–158.

    Chapter  Google Scholar 

  2. Pozolotina, V.N., Antonova, E.V., and Bezel, V.S., Comparison of remote consequences in Taraxacum officinale seed progeny collected in radioactively or chemically contaminated areas, Ecotoxicology, 2012, vol. 21, no. 7, pp. 1979–1988.

    Article  CAS  PubMed  Google Scholar 

  3. Titov, A.F., Kaznina, N.M., and Talanova, V.V., Tyazhelye metally i rasteniya (Heavy Metals and Plants), Petrozavodsk: Karel. Nauch. Tsentr Ross. Akad. Nauk, 2014.

    Google Scholar 

  4. Pozolotina, V.N., Antonova, E.V., and Shimalina, N.S., Adaptation of greater plantain, Plantago major L., to long term radiation and chemical exposure, Russ. J. Ecol., 2016, vol. 47, no. 1, pp. 1–10. doi 10.1134/S1067413616010124

    Article  CAS  Google Scholar 

  5. Zvereva, E.L., Roitto, M., and Kozlov, M.V., Growth and reproduction of vascular plants in polluted environments: A synthesis of existing knowledge, Environ. Rev., 2010, vol. 18, pp. 355–367. doi 10.1139/A10-017

    Article  CAS  Google Scholar 

  6. Elkarmi, A. and Eideh, A.R., Allometry of Urtica urens in polluted and unpolluted habitats, J. Plant Biol., 2006, vol. 49, no. 1, pp. 9–15. doi 10.1007/BF03030783

    Article  Google Scholar 

  7. Calabrese, E.J., Hormesis: Why it is important to toxicology and toxicologists, Environ Toxicol. Chem., 2008, vol. 27, pp. 1451–1474. doi 10.1897/07-541

    Article  CAS  PubMed  Google Scholar 

  8. Erofeeva, E.A., Hormesis and paradoxical effects of wheat seedling (Triticum aestivum L.) parameters upon exposure to different pollutants in a wide range of doses, Dose Response, 2014, vol. 12, pp. 121–135.

    PubMed  Google Scholar 

  9. Sharma, P., Jha, A.B., Dubey, R.S., and Pessarakli, M., Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions, J. Bot., 2012, vol. 2012, pp. 1–26. doi 10.1155/2012/217037

    Article  Google Scholar 

  10. Chirkova, T.V., Fiziologicheskie osnovy ustoichivosti rastenii (Physiological Bases of Plant Hardiness), St. Petersburg: S.-Peterb. Gos. Univ., 2002.

    Google Scholar 

  11. Fang, W.C., Enhanced peroxidase activity in rice leaves in response to excess iron, copper, and zinc, Plant Sci., 2000, vol. 158, pp. 71–76.

    Article  CAS  PubMed  Google Scholar 

  12. Devi, S.R. and Prasad, M.N.V., Antioxidant capacity of Brassica juncea plants exposed to elevated levels of copper, Russ. J. Plant Physiol., 2005, vol. 52, no. 2, pp. 205–208.

    Article  CAS  Google Scholar 

  13. Sanchez-Pardo, B., Fernandes-Pascual, M., and Zornoza, P., Copper microlocalization and changes in leaf morphology, chloroplast ultrastructure and antioxidative response in white lupin and soybean grown in copper excess, J. Plant Res., 2014, vol. 127, pp. 119–129. doi 10.1007/s10265-013-0581-1

    Article  CAS  PubMed  Google Scholar 

  14. Pozolotina, V. and Antonova, E., Temporal variability of the quality of Taraxacum officinale seed progeny from the East-Ural radioactive trace: Is there an interaction between low level radiation and weather conditions?, int. J. Radiat. Biol., 2017, vol. 93, no. 3, pp. 330–339.

    Article  CAS  PubMed  Google Scholar 

  15. Bezel’, V.S., Pozolotina, V.N., Bel’skii, E.A., and Zhuikova, T.V., Variation in population parameters: Adaptation to toxic environmental factors, Russ. J. Ecol., 2001, vol. 32, no. 6, pp. 413–419.

    Article  Google Scholar 

  16. Ontogeneticheskii atlas lekarstvennykh rastenii (Ontogenetic Atlas of Medicinal Plants), vol. 1, Zhukova, L.A., Ed., Ioshkar-Ola: Mariisk. Gos. Univ., 1997, pp. 121–132.

  17. Kompleksnaya ekologicheskaya otsenka tekhnogennogo vozdeistviya na ekosistemy yuzhnoi taigi (Integrated Ecological Assessment of Technogenic Impact on Southern Taiga Ecosystems), Stepanov, A.M., Ed., Moscow: TsEPL, 1992.

  18. Chernen'kova, T.V., Reaktsiya lesnoi rastitel’nosti na promyshlennoe zagryaznenie (Response of Forest Vegetation to Industrial Pollution), Moscow: Nauka, 2002.

  19. Smorkalov, I.A. and Vorobeichik, E.L., Soil respiration of forest ecosystems in gradients of environmental pollution by emissions from copper smelters, Russ. J. Ecol., 2011, vol. 42, no. 6, pp. 464–470.

    Article  CAS  Google Scholar 

  20. Kaigorodova, S.Yu., Transformation of soil morphology in the zone of impact from the Karabash Copper Smelter, Vestn. Orenburg. Gos. Univ., 2012, no. 6, pp. 13–17.

    Google Scholar 

  21. Ermakov, A.I., Arasimovich, V.V., and Yarosh, N.P., Metody biokhimicheskogo issledovaniya rastenii (Methods of Biochemical Analysis of Plants), Leningrad: Agropromizdat, 1987.

    Google Scholar 

  22. Buege, J.A. and Aust, S.D., Microsomal lipid peroxidation, in Methods in Enzymology, vol. 52, Fleischer, S. and Packer, L., Eds., New York: Academic Press, 1978, pp. 302–310.

    Google Scholar 

  23. Kruger, N.J., The Bradford method for protein quantitation, in The Protein Protocols Handbook, Walker, J.M., Ed., New York: Humana Press, 2002, pp. 15–21.

    Chapter  Google Scholar 

  24. Giannopolitis, C.N. and Ries, S.K., Superoxide dismutases: 1. Occurrence in higher plants, Plant Physiol., 1977, vol. 59, no. 2, pp. 309–314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Góth, L., A simple method for determination of serum catalase activity and revision of reference range, Clin. Chim. Acta, 1991, vol. 196, pp. 143–152.

    Article  PubMed  Google Scholar 

  26. Popov, T. and Neikovska, L., A method for determining blood peroxidase activity, Gig. Sanit., 1971, no. 10, pp. 89–91.

    Google Scholar 

  27. Newcombe, R.G., Interval estimation for the difference between independent proportions: Comparison of eleven methods, Stat. Med., 1998, vol. 17, no. 8, pp. 873–890.

    Article  CAS  PubMed  Google Scholar 

  28. Galat, T.M. and Shehata, H.S., Bioaccumulation and translocation of heavy metals by Plantago major L. grown in contaminated soils under the effect of traffic pollution, Ecol. Indic., 2015, vol. 48, pp. 244–251.

    Article  Google Scholar 

  29. Prokop’ev, I.A., Zhuravskaya, A.N., and Filippova, G.V., Variability of biochemical parameters and radiation resistance of the seed progeny of Descurainia sophia and Lepidium apetalum under exposure to various factors, Russ. J. Ecol., 2011, vol. 42, no. 4, pp. 277–282.

    Article  Google Scholar 

  30. Antonova, E.V., Karimullina, E.M., and Pozolotina, V.N., Intraspecific variation in Melandrium album along a radioactive contamination gradient at the Eastern Ural Radioactive Trace, Russ. J. Ecol., 2013, vol. 44, no. 1, pp. 18–27. doi 10.1134/S1067413613010025

    Article  Google Scholar 

  31. Antonova, E.V., Pozolotina, V.N., and Karimullina, E.M., Variation in the seed progeny of smooth brome grass, Bromus inermis Leyss., under conditions of chronic irradiation in the zone of the Eastern Ural Radioactive Trace, Russ. J. Ecol., 2014, vol. 45, no. 6, pp. 508–516. doi 10.1134/S1067413614060034

    Article  Google Scholar 

  32. Bruce, T.J.A., Matthes, M.C., Napier, J.A., and Pickett, J.A., Stressful ''memories'' of plants: Evidence and possible mechanisms, Plant Sci., 2007, vol. 173, pp. 603–608.

    Article  CAS  Google Scholar 

  33. Maternal Effects As Adaptations, Mousseau, T.A. and Fox, C.W., Eds., Oxford, UK: Oxford Univ. Press, 1998.

  34. Galloway, L.F., Maternal effects provide phenotypic adaptation to local environmental conditions, New Phytol., 2005, vol. 166, no. 1, pp. 93–99.

    Article  PubMed  Google Scholar 

  35. Boyko, A. and Kovalchuk, I., Genome instability and epigenetic modification: Heritable responses to environmental stress?, Curr. Opin. Plant Biol., 2011, vol. 14, no. 3, pp. 260–266.

    Article  PubMed  Google Scholar 

  36. Polesskaya, O.G., Rastitel’naya kletka i aktivnye formy kisloroda (Plant Cell and Reactive Oxygen Species), Moscow: Universitet, 2007.

    Google Scholar 

  37. Lutova, L.A., Ezhova, T.A., Dodueva, I.E., and Osipova, M.A., Genetika razvitiya rastenii (Genetics of Plant Development), St. Petersburg: Izd. N-L, 2010.

    Google Scholar 

  38. Ahmad, P., Sarwat, M., and Sharma, S., Reactive oxygen species, antioxidants and signaling in plants, J. Plant Biol., 2008, vol. 51, no. 3, pp. 167–173.

    Article  CAS  Google Scholar 

  39. Veselova, T.V., Veselovskii, V.A., and Chernavskii, D.S., Stress u rastenii (Stress in Plants), Moscow: Mosk. Gos. Univ., 1993.

    Google Scholar 

  40. Raychaudhuri, S.S. and Deng, X., W. The role of SOD in combating oxidative stress in higher plants, Bot. Rev., 2000, vol. 66, no. 1, pp. 89–98.

    Article  Google Scholar 

  41. Alscher, R.G., Erturk, N., and Heath, L.S., Role of superoxide dismutases (SODs) in controlling oxidative stress in plants, J. Exp. Bot., 2002, vol. 53, no. 372, pp. 1331–1341.

    Article  CAS  PubMed  Google Scholar 

  42. Ogawa, K., Kanematsu, S., and Asada, K., Intra- and extra-cellular localization of “cytosolic” CuZn-superoxide dismutase in spinach leaf and hypocotyls, Plant Cell Physiol., 1996, vol. 37, pp. 790–799.

    Article  CAS  Google Scholar 

  43. Gazaryan, I.G., Khushpul’yan, D.M., and Tishkov, V.I., Specific features in the structure and action mechanism of plant peroxidases, Usp. Biol. Khim., 2006, vol. 46, pp. 303–322.

    CAS  Google Scholar 

  44. Almagro, L., Gomez Ros, L.V., Belchi-Navarro, S., et al., Class III peroxidases in plant defense reactions, J. Exp. Bot., 2009, vol. 60, no. 2, pp. 377–390.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Pozolotina.

Additional information

Original Russian Text © N.S. Shimalina, V.N. Pozolotina, N.A. Orekhova, E.V. Antonova, 2017, published in Ekologiya, 2017, No. 6, pp. 420–430.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimalina, N.S., Pozolotina, V.N., Orekhova, N.A. et al. Assessment of biological effects in Plantago major L. Seed progeny in the zone of impact from a Copper Smelter. Russ J Ecol 48, 513–523 (2017). https://doi.org/10.1134/S1067413617060108

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1067413617060108

Keywords

Navigation