Skip to main content
Log in

Adaptation of greater plantain, Plantago major L., to long-term radiation and chemical exposure

  • Published:
Russian Journal of Ecology Aims and scope Submit manuscript

Abstract

A comparative study of the greater plantain seed progeny was performed with samples from cenopopulations growing for a long time under conditions of radioactive contamination (in the Eastern Ural Radioactive Trace, EURT) or chemical pollution (in the impact zone of the Nizhny Tagil Iron and Steel Works, NTMK). The progeny of plants from the NTMK zone had low viability but proved to be resistant to the additional impact of a “new” factor (acute γ-irradiation) as well as of the “habitual” factor (heavy metal toxicity). Plantain seeds from the EURT area showed high viability and low heavy metal and radiation resistance; i.e., no preadaptation effect was revealed. In experiments on growing plants from different cenopopulations in plot culture, samples from the EURT zone were characterized mainly by morphoses of generative organs, while samples from the NTMK area, by morphoses of vegetative organs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aarkrog, A., Dahlgaard, H., Nielsen, S.P., Trapeznikov, A.V., Molchanova, I.V., Pozolotina, V.N., Karavaeva, E.N., Yushkov, P.I., and Polikarpov, G.G., Radioactive inventories from the Kyshtym and Karachay accidents: Estimates based on soil samples collected in the South Urals (1990–1995), Sci. Tot. Environ., 1997, vol. 201, pp. 137–154.

    Article  CAS  Google Scholar 

  • Alekseeva-Popova, N.V., Ustoichivost’ k tyazhelym metallam dikorastushchikh vidov (Heavy Metal Tolerance of Wildgrowing Species), Leningrad: Nauka, 1991.

    Google Scholar 

  • Antonova, E.V., Pozolotina, V.N., and Karimullina, E.M., Variation in the seed progeny of smooth brome grass, Bromus inermis Leyss., under conditions of chronic irradiation in the zone of the Eastern Ural Radioactive Trace, Russ. J. Ecol., 2014, vol. 45, no. 6, pp. 508–516.

    Article  Google Scholar 

  • Antoshchina, M.M., Ryabchenko, N.I., and Nasonova, V.A., Genome instability in the progeny of Chinese hamster cells exposed to low-dose irradiation at different radiation intensities, Radiats. Biol. Radioekol., 2005, vol. 45, no. 3, pp. 291–293.

    CAS  Google Scholar 

  • Beresford, N.A., Wright, S.M., Barnett, C.L., et al., A case study in the Chernobyl zone: 2. Predicting radiation-induced effects in biota, Radioprotection, 2005, vol. 40, no. 1, pp. 299–305.

    Article  Google Scholar 

  • Bezel’, V.S., Ekologicheskaya toksikologiya: populyatsionnyi i biotsenoticheskii aspekty (Ecological Toxicology: Population and Biocenotic Aspects), Yekaterinburg: Goshchitskii, 2006.

    Google Scholar 

  • Boyko, A. and Kovalchuk, I., Genome instability and epigenetic modification: Heritable responses to environmental stress?, Curr. Opin. Plant Biol., 2011, vol. 14, no. 3, pp. 260–266.

    Article  PubMed  Google Scholar 

  • Brown, J.E., Alfonso, B., Avila, R., et al., The ERICA tool, J. Environ. Radioact., 2008, vol. 99, no. 9, pp. 1371–1383.

    Article  CAS  PubMed  Google Scholar 

  • Bychkovskaya, I.B., Gil’yano, N.Ya., Fedortseva, R.F., and Bercher, F.S., On a special form of radiation-induced genome instability, Radiats. Biol. Radioekol., 2005, vol. 45, no. 6, pp. 688–694.

    Google Scholar 

  • Chalker-Scott, L., Environmental significance of anthocyanins in plant stress responses, Photochem. Photobiol., 1999, vol. 70, no. 1, pp. 1–9.

    Article  CAS  Google Scholar 

  • Diaz-Vivancos, P., Rubio, M., Mesonero, V., et al., The apoplastic antioxidant system in Prunus: Response to longterm plum poxvirus infection, J. Exp. Bot., 2006, vol. 57, no. 14, pp. 3813–3824.

    Article  CAS  PubMed  Google Scholar 

  • Ekologicheskie posledstviya radioaktivnogo zagryazneniya na Yuzhnom Urale (Ecological Consequences of Radioactive Contamination in the Southern Urals), Moscow: Nauka, 1993.

  • Evseeva, T.I., Maistrenko, T.A., Geras’kin, S.A., and Belykh, E.S., Genetic variation in tufted vetch cenopopulations in an area with an increased level of natural background radioactivity, Radiats. Biol. Radioekol., 2007, vol. 47, no. 1, pp. 54–62.

    CAS  Google Scholar 

  • Franklin, G., Conceicao, L.F., Kombrink, E., and Dias, A.C., Xanthone biosynthesis in Hypericum perforatum cells provides antioxidant and antimicrobial protection upon biotic stress, Phytochemistry, 2009, vol. 70, no. 1, pp. 60–68.

    Article  CAS  PubMed  Google Scholar 

  • Fuma, S., Ishii, N., Takeda, H., et al., Effects of acute gamma-irradiation on the aquatic microbial microcosm in comparison with chemicals, J. Environ. Radioact., 2009, vol. 100, no. 12, pp. 1027–1033.

    Article  CAS  PubMed  Google Scholar 

  • Galloway, L.F., Maternal effects provide phenotypic adaptation to local environmental conditions, New Phytol., 2005, vol. 166, no. 1, pp. 93–99.

    Article  PubMed  Google Scholar 

  • Garnier-Laplace, J., Gilek, M., Sundell-Bergman, S., and Larsson, C.-M., Assessing ecological effects of radionuclides: Data gaps and extrapolation issues, J. Radiol. Protect., 2004, vol. 24, pp. A139–A155.

    Article  CAS  Google Scholar 

  • Gordeeva, E.I., Shoeva, O.Y., and Khlestkina, E.K., Cold stress response of wheat genotypes having different Rc alleles, Cereal Res. Commun., 2013, vol. 41, no. 4, pp. 519–526.

    Article  Google Scholar 

  • Gosudarstvennyi doklad “O sostoyanii i ob okhrane okruzhayushchei sredy Rossiiskoi Federatsii v 2013 godu” (State Report On the State and Protection of the Environment in the Russian Federation in the Year 2013), Moscow: Ministerstvo Prirodnykh Resursov i Ekologii Rossiiskoi Federatsii, 2014.

  • Grodzinskii, D.M., Radiobiologiya rastenii (Plant Radiobiology), Kiev: Naukova Dumka, 1989.

    Google Scholar 

  • Hammer, Ø., Harper, D.A.T., and Ryan, P.D., PAST: Paleontological Statistics Software Package for Education and Data Analysis, 2001. http://palaeo-electronica.org/2001_1/past/issue1_01.htm

    Google Scholar 

  • Igonina, E.V., Fedotov, I.S., Korotkevich, A.Yu., and Rubanovich, A.V., Morphological anomalies in the progeny of irradiated Scots pines (Pinus sylvestris L.) from Chernobyl populations, Radiats. Biol. Radioekol., 2012, vol. 52, no. 1, pp. 90–102.

    CAS  Google Scholar 

  • Karimullina, E., Antonova, E., and Pozolotina, V., Assessing radiation exposure of herbaceous plant species at the East-Ural Radioactive Trace, J. Environ. Radioact., 2013, vol. 124, pp. 113–120.

    Article  CAS  PubMed  Google Scholar 

  • Khlestkina, E.K., The adaptive role of flavonoids: Emphasis on cereals, Cereal Res. Commun., 2013, vol. 41, no. 2, pp. 185–198.

    Article  CAS  Google Scholar 

  • Kim, G.J., Fiskum, G.M., and Morgan, W.F., A role for mitochondrial dysfunction in perpetuating radiationinduced genomic instability, Cancer Res., 2006, vol. 66, no. 21, pp. 10377–10383.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kordali, S., Kotan, R., Mavi, A., et al., Determination of the chemical composition and antioxidant activity of the essential oil of Artemisia dracunculus and of the antifungal and antibacterial activities of Turkish Artemisia absinthium, A. dracunculus, Artemisia santonicum, and Artemisia spicigera essential oils, J. Agric. Food Chem., 2005, vol. 53, no. 24, pp. 9452–9458.

    Article  CAS  PubMed  Google Scholar 

  • Kovalchuk, I., Abramov, V., Pogribny, I., and Kovalchuk, O., Molecular aspects of plant adaptation to life in the Chernobyl zone, Plant Physiol., 2004, vol. 135, no. 1, pp. 357–363.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Latzel, V., Janecek, Š., Doležal, J., et al., Adaptive transgenerational plasticity in the perennial Plantago lanceolata, Oikos, 2014, vol. 123, no. 1, pp. 41–46.

    Article  Google Scholar 

  • Little, J.B., Radiation-induced genomic instability, Int. J. Radiat. Biol., 1998, vol. 74, no. 6, pp. 663–671.

    Article  CAS  PubMed  Google Scholar 

  • Marder, B.A. and Morgan, W.F., Delayed chromosomal instability induced by DNA damage, Mol. Cell Biol., 1993, vol. 13, no. 11, pp. 6667–6677.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maternal Effects As Adaptations, Mousseau, T.A. and Fox, C.W., Eds., Oxford: Oxford Univ. Press, 1998.

  • Mazurik, V.K. and Mikhailov, V.F., Radiation-induced genome instability: Phenomenon, molecular mechanisms, and pathogenic significance, Radiats. Biol. Radioekol., 2001, vol. 41, no. 3, pp. 272–289.

    CAS  Google Scholar 

  • Miao, S.L., Bazzaz, F.A., and Primack, R.B., Persistence of maternal nutrient effects in Plantago major–the 3rd generation, Ecology, 1991, vol. 72, no. 5, pp. 1634–1642.

    Article  Google Scholar 

  • Molchanova, I., Mikhailovskaya, L., Antonov, K., et al., Current assessment of integrated content of long-lived radionuclides in soils of the head part of the East Ural Radioactive Trace, J. Environ. Radioact., 2014, vol. 138, no. 6, pp. 238–248.

    Article  CAS  PubMed  Google Scholar 

  • Morgan-Richards, M. and Wolff, K., Genetic structure and differentiation of Plantago major reveals a pair of sympatric sister species, Mol. Ecol., 1999, vol. 8, no. 6, pp. 1027–1036.

    Article  Google Scholar 

  • Mukaida, N., Kodama, S., Suzuki, K., et al., Transmission of genomic instability from a single irradiated human chromosome to the progeny of unirradiated cells, Radiat. Res., 2007, vol. 167, no. 6, pp. 675–681.

    Article  CAS  PubMed  Google Scholar 

  • Newcombe, R.G., Interval estimation for the difference between independent proportions: Comparison of eleven methods, Stat. Med., 1998, vol. 17, no. 8, pp. 873–890.

    Article  CAS  PubMed  Google Scholar 

  • Ontogeneticheskii atlas lekarstvennykh rastenii (An Ontogenetic Atlas of Medicinal Plants). Ioshkar-Ola: Mariisk. Gos. Univ., 1997.

  • Popova, O.N., Taskaev, A.I., and Frolova, N.P., Geneticheskaya stabil’nost’ i izmenchivost' semyan v populyatsiyakh travyanistykh fitotsenozov v raione avarii na Chernobyl’skoi AES (Genetic Stability and Variability of Seeds in Populations of Herbaceous Phytocenoses in the Region of the Chernobyl Accident), St. Petersburg: Nauka, 1992.

    Google Scholar 

  • Pozolotina, V.N., Molchanova, I.V., Karavaeva, E.N., et al., Sovremennoe sostoyanie nazemnykh ekosistem zony Vostochno-Ural’skogo radioaktivnogo sleda (Current State of Terrestrial Ecosystems in the Zone of Eastern Ural Radioactive Trace), Yekaterinburg: Goshchitskii, 2008.

    Google Scholar 

  • Pozolotina, V.N., Antonova, E.V., and Bezel, V.S., Comparison of remote consequences in Taraxacum officinale seed progeny collected in radioactively or chemically contaminated areas, Ecotoxicology, 2012a, vol. 21, no. 7, pp. 1979–1988.

    Article  CAS  PubMed  Google Scholar 

  • Pozolotina, V.N., Molchanova, I.V., Mikhaylovskaya, L.N., et al., The current state of terrestrial ecosystems in the Eastern Ural Radioactive Trace, in Radionuclides: Sources, Properties and Hazards, New York, 2012b, pp. 1–22.

    Google Scholar 

  • Ren, H.X., Wang, Z.L., Chen, X., and Zhu, Y.L., Antioxidative responses to different altitudes in Plantago major, Environ. Exp. Bot., 1999, vol. 42, no. 1, pp. 51–59.

    Article  CAS  Google Scholar 

  • Shevchenko, V.A., Abramov, V.I., and Pechkurenkov, V.L., Geneticheskie posledstviya na Vostochno-Ural’skom radioaktivnom slede (Genetic Consequences in the Eastern Ural Radioactive Trace), Moscow: Nauka, 1992.

    Google Scholar 

  • Tomilov, A.A., Tomilova, N.V., Ogarkova, O.A., and Tarasov, V.A., Identification of a gene involved in the control of the root system development in Arabidopsis thaliana, Russ. J. Genet., 2001, vol. 37, no. 1, pp. 30–38.

    Article  CAS  Google Scholar 

  • Treutter, D., Significance of flavonoids in plant resistance and enhancement of their biosynthesis, Plant Biol., 2005, vol. 7, no. 6, pp. 581–591.

    Article  CAS  PubMed  Google Scholar 

  • Van Dijk, H., Wolff, K., and De Vries, A., Genetic variability in Plantago species in relation to their ecology: 3. Genetic structure of populations of P. major, P. lanceolata and P. coronopus, Theor. Appl. Genet., 1988, vol. 75, no. 3, pp. 518–528.

    Article  Google Scholar 

  • Yoshida, K., Mori, M., and Kondo, T., Blue flower color development by anthocyanins: From chemical structure to cell physiology, Nat. Prod. Rep., 2009, vol. 26, no. 7, pp. 884–915.

    Article  CAS  PubMed  Google Scholar 

  • Youngson, N.A. and Whitelaw, E., Transgenerational epigenetic effects, Annu. Rev. Genom. Human Genet., 2008, vol. 9, pp. 233–257.

    Article  CAS  Google Scholar 

  • Zhuikova T.V. Responses of herbaceous cenopopulations and communities to chemical pollution of the environment, Extended Abstract of Doctoral (Biol.) Dissertation, Yekaterinburg, 2009.

    Google Scholar 

  • Zhukova, L.A., Vedernikova, O.P., Faizullina, S.Ya., Balakhonov, S.V., Maksimenko, O.E., and Glotov, N.V., Ecological–demographic characteristics of natural populations of Plantago major, Russ. J. Ecol., 1996, vol. 27, no. 6, pp. 425–431.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Pozolotina.

Additional information

Original Russian Text © V.N. Pozolotina, E.V. Antonova, N.S. Shimalina, 2016, published in Ekologiya, 2016, No. 1, pp. 3–13.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pozolotina, V.N., Antonova, E.V. & Shimalina, N.S. Adaptation of greater plantain, Plantago major L., to long-term radiation and chemical exposure. Russ J Ecol 47, 1–10 (2016). https://doi.org/10.1134/S1067413616010124

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1067413616010124

Keywords

Navigation