, Volume 58, Issue 2, pp 203–211 | Cite as

Structure and hydrolytic durability of a glass containing waste from spent tributyl phosphate reprocessing

  • S. V. Stefanovsky
  • E. A. Barinova


The structure of the glass obtained by incorporation of the residue from reprocessing of the spent extractant, tributyl phosphate, into sodium aluminophosphate glass and the structural state of uranium in this glass were studied by vibration (IR, Raman) and X-ray absorption (XAFS) spectroscopy. An IR and Raman spectroscopic study shows that the structural network of the glasses is formed by ortho- and pyrophosphate groups linked by tetrahedral AlO4 units. As follows from the XAFS data, uranium is present in the glass in the form of uranyl ions and of separate UO2+x particles. The glass has high hydrolytic durability: The uranium leach rate determined in accordance with GOST (State Standard) R 52 126–2003 is of the order of 10–8 g cm–2 day–1.


tributyl phosphate liquid radioactive waste reprocessing phosphate glasses IR spectrometry Raman spectrometry leaching 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Glagolenko, Yu.V., Dzekun, E.G., Drozhko, E.G., et al., Vopr. Radiats. Bezopasn., 1996, no. 2, pp. 83–88.Google Scholar
  2. 2.
    Varlakov, A.P. and Germanov, A.V., At. Energy, 2012, vol. 113, no. 2, pp. 100–105.CrossRefGoogle Scholar
  3. 3.
    Kobelev, A.P., Savkin, A.E., and Barinova, E.A., in Waste Management 2012 Conf., Phoenix, AZ (USA), Feb. 26–March 1, 2012, CD-ROM, ID 12084.Google Scholar
  4. 4.
    Anshits, N.N., Salanov, A.N., Vereshchagina, T.A., et al., Int. J. Nucl. Energy Sci. Technol., 2006, vol. 2, nos. 1/2, pp. 8–24.CrossRefGoogle Scholar
  5. 5.
    Bettinger, J.A., Ferland, P.E., Ferland, E.D., and Killilea, W., in Waste Management 1994 Conf., Tucson, AZ (USA), Feb. 27–March 3, 1994, vol. 2, pp. 813–817.Google Scholar
  6. 6.
    Calzavara, Y., Joussot-Dubien, C., Turc, H.-A., et al., J. Supercrit. Fluids, 2004, vol. 31, pp. 195–206.CrossRefGoogle Scholar
  7. 7.
    Remizov, M.B., Kozlov, P.V., Logunov, M.V., et al., Vopr. Radiats. Bezopasn., 2014, no. 3, pp. 17–27.Google Scholar
  8. 8.
    Barinova, E.A., Diordy, M.N., and Karlina, O.K., in ICEM 2013 Conf., Brussels (Belgium), Sept. 8–12, 2013, CD-ROM, ICEM2013-96111.Google Scholar
  9. 9.
    Brezhneva, N.E., Minaev, A.A., and Oziraner, S.N., Scientific Basis for Nuclear Waste Management, McCarthy, G.J., Ed., New York: Plenum, 1979, vol. 1, pp. 43–50.CrossRefGoogle Scholar
  10. 10.
    Stefanovsky, S.V., Stefanovskaya, O.I., Vinokurov, S.E., et al., Radiochemistry, 2015, vol. 57, no. 4, pp. 295–301.CrossRefGoogle Scholar
  11. 11.
    Stefanovsky, S.V., Stefanovsky, O.I., Kadyko, M.I., et al., J. Non-Cryst. Solids, 2015, vol. 425, pp. 138–145.CrossRefGoogle Scholar
  12. 12.
    Schreiber, H.D., Balazs, G.B., Williams, B.J., J. Am. Ceram. Soc., 1982, vol. 65, no. 9, pp. 449–453.CrossRefGoogle Scholar
  13. 13.
    Fosfatnye stekla s radioaktivnymi otkhodami (Phosphate Glasses with Radioactive Waste), Vashman, A.A. and Polyakov, A.S., Eds., Moscow TsNIIAtominform, 1997.Google Scholar
  14. 14.
    Kuz’min, A.Yu., Purans, Yu.Ya., Sazonov, A.I., and Stefanovsky, S.V., Zh. Prikl. Spektrosk., 1993, vol. 58, nos. 5–6, pp. 538–543.Google Scholar
  15. 15.
    Chernyshov, A.A., Veligzhanin, A.A., and Zubavichus, Y.V., Nucl. Instrum. Meth. Phys. Res. A, 2009, vol. 603, pp. 95–98.CrossRefGoogle Scholar
  16. 16.
    Ravel, B. and Newville, M., J. Synchrotron Radiat., 2005, vol. 12, pp. 537–541.CrossRefGoogle Scholar
  17. 17.
    Ankudinov, A.L. and Rehr, J.J., Phys. Rev. B, 1997, vol. 56, pp. 1712–1716.CrossRefGoogle Scholar
  18. 18.
    GOST (State Standard) R 52126–2003: Radioactive Waste. Determination of the Chemical Durability of Solidified High-Level Waste by Long-Term Leaching, Moscow: Gosstandart Rossii, 2003.Google Scholar
  19. 19.
    Lazarev, A.N., Mirgorodskii, A.P., and Ignat’ev, I.S., Kolebatel’nye spektry slozhnykh okislov (Vibration Spectra of Complex Oxides), Leningrad Nauka, 1975.Google Scholar
  20. 20.
    Anfilogov, V.N., Bykov, V.N., and Osipov, A.A., Silikatnye rasplavy (Silicate Melts), Moscow Nauka, 2005.Google Scholar
  21. 21.
    Ferraro, J.R. and Walker, A., J. Chem. Phys., 1966, vol. 45, no. 2, pp. 550–553.CrossRefGoogle Scholar
  22. 22.
    Mizuoka, K. and Ikeda, Y., Inorg. Chem., 2003, vol. 42, pp. 3396–3398.CrossRefGoogle Scholar
  23. 23.
    Veal, B.W., Mundy, J.N., and Lam, D.J., Handbook of the Physics and Chemistry of the Actinides, Freeman, A.J. and Lander, G.H., Eds., Elsevier, 1987, pp. 271–309.Google Scholar
  24. 24.
    Farges, F., Ponader, C.W., Calas, G., and Brown, G.E., Jr., Geochim. Cosmochim. Acta, 1992, vol. 56, pp. 4205–4220.CrossRefGoogle Scholar
  25. 25.
    Hess, N.J., Weber, W.J., and Conradson, S.D., J. Alloys Compd., 1998, vols. 271–273, pp. 240–243.CrossRefGoogle Scholar
  26. 26.
    Conradson, S.D., Manara, D., Wastin, F., et al., Inorg. Chem., 2004, vol. 43, pp. 6922–6935.CrossRefGoogle Scholar
  27. 27.
    Burns, P.C. and Finch, R.J., Am. Mineral., 1999, vol. 84, pp. 1456–1460.CrossRefGoogle Scholar
  28. 28.
    Fortner, J.A., Kropf, A.J., Finch, R.J., et al., J. Nucl. Mater., 2002, vol. 304, pp. 56–62.CrossRefGoogle Scholar
  29. 29.
    Schreiber, H.D. and Balazs, G.B., Phys. Chem. Glasses, 1982, vol. 23, pp. 139–146.Google Scholar
  30. 30.
    Eller, P.G., Jarvinen, G.D., Purson, J.D., et al., Radiochim. Acta, 1985, vol. 39, pp. 17–22.CrossRefGoogle Scholar
  31. 31.
    Petit-Maire, D., Petiau, J., Calas, G., and Jaquet-Francillon, N., J. Phys., 1986, vol. 47, coll. C8, suppl. 12, pp. C8-849–C8-852.Google Scholar
  32. 32.
    Matyunin, Yu.I. and Yudintsev, S.V., At. Energ., 1998, vol. 84, no. 3, pp. 173–178.CrossRefGoogle Scholar
  33. 33.
    Aloy, A.S., Trofimenko, A.V., Iskhakova, O.A., and Jardine, L.J., Mater. Res. Soc. Symp. Proc., 2004, vol. 824, pp. 345–350.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  1. 1.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia
  2. 2.Radon United Ecological, Scientific, and Research Centre of Decontamination of Radioactive Waste and Environmental ProtectionMoscowRussia

Personalised recommendations