Skip to main content
Log in

Vitrified Municipal Waste for the Immobilization of Radioactive Waste: Preparation and Characterization of Borosilicate Glasses Modified with Metal Oxides

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Municipal solid waste is used as a raw material for the production of borosilicate glasses by melting annealing technique. Many chemical and physical measurements are studied to test their possibility in the immobilization of radioactive wastes. The results show good behaviors against gamma radiation doses such as suitable density and microhardness values, stable behaviors towards low and high doses of gamma radiation indicated by IR and EPR techniques. As well as good chemical durability in H2O and NaOH leaching solutions. The network structure of borosilicate glasses consists of tetrahedral silicate units SiO4 and the triangle BO3 or tetrahedral BO4 groups which strengthen the structure of glasses and enhance their desired properties for achieving the goal of immobilizing nuclear wastes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexander K, Mario P, Alessandro H (2003) Sintered glass-ceramics from municipal solid waste-incinerator fly ashes-part I: the influence of the heating rate of the heating rate on the sinter-crystallization. Eur Ceram Soc 23:827–832

  2. Yang J, Bo X, Boccaccini AR (2009) Preparation of low melting temperature glass–ceramics from municipal waste incineration fly ash. Fuel 88:1275–1280

    Article  CAS  Google Scholar 

  3. Barbieri L, Bonamartini AC, Lancellotti I (2000) Alkaline and alkaline-earth silicate glasses and glass-ceramics from municipal and industrial wastes. Eur Ceram Soc 20:2477–2483

    Article  CAS  Google Scholar 

  4. Maximina R, Jes´us VM (1999) Surface and bulk crystallization of glass‐ceramic in the Na2O‐CaO‐ZnO‐PbO‐Fe2O3‐Al2O3‐SiO2 system derived from a goethite waste. Am Ceram Soc 82:1313–1317

  5. Vernaz E, Veyer C, Gin S (2016) Waste glasses. Elsevier, France

    Google Scholar 

  6. Baydogan N, Tugrul AB (2012) Borosilicate glass for gamma irradiation fields. Solid State Sci 14:1692–1697

    Article  CAS  Google Scholar 

  7. El-Alaily NA, Abou-Hussein EM, Abdel-Monem YK, Abd Elaziz TD, Ezz-Eldin FM (2014) Vitrified municipal waste as a host form for high-level nuclear waste. Radioanal Nucl Chem 299:65–73

    Article  CAS  Google Scholar 

  8. Roth G, Weisenburger S (2000) Vitrification of high-level liquid waste: glass chemistry, process chemistry and process technology. Nucl Eng Des 202:197–207

    Article  CAS  Google Scholar 

  9. Donald IW, Metcalfe BL, Taylor RNJ (1997) Review: the immobilization of high level radioactive waste using ceramics and glasses. Mater Sci 32:5851–5887

  10. Compton KL, Bennert DM, Bickford DF (1993) Regulatory issues in vitrification research: a case study of circuit board reclamation. Am Ceram Soc 39:3–12

  11. Festa D, Gudagnino M (1995). Rivista della Stazione Sperimentale del Vetro 5:89–93

    Google Scholar 

  12. Rupesh Kumar A, Rao TGVM, Neeraja K, Rami Reddy M, Veeraiah N (2013) Gamma ray induced changes on vibrational spectroscopic properties of strontium alumino-borosilicate glasses. Vib Spectrosc 69:49–56

    Article  CAS  Google Scholar 

  13. Kim M, Heo J (2015) Calcium-borosilicate glass-ceramics waste forms to immobilize rare-earth oxide wastes from pyro-processing. Nucl Mater 467:224–228

    Article  CAS  Google Scholar 

  14. Azooz MA, El Batal HA, Abd El Moneim M (2005) Corrosion Behaviour of Some Gamma-Irradiated Phosphate Glasses for Radioactive Wastes Burial Applications. Trans Indian Ceram Soc 64:95–100

    Article  CAS  Google Scholar 

  15. Vance ER, Begg BD, Gregg DJ (2017) Immobilization of high-level radioactive waste and used nuclear fuel for safe disposal in geological repository systems. In: Woodhead Publishing Series in Energy (2ndeds) Geological Repository Systems for Safe Disposal of Spent Nuclear Fuels and Radioactive Waste. Lucas Heights, NSW, Australia

  16. Weber WJ, Ewing RC, Angel CA, Arnold GW, Cormack AN, Delaye JM, Griscom DL, Hobbs LW, Navrotsky A, Price DL, Stoneham AM, Weinberg MC (1997) Radiation Effects in Glasses Used for Immobilization of High-level Waste and Plutonium Disposition. Mater Res 12:1948–1978

    Article  Google Scholar 

  17. De Echave T, Tribet M, Jollivet P, Marques C, Gin S, Jégou C (2018) Effect of clayey groundwater on the dissolution rate of SON68 simulated nuclear waste glass at 70 °C. Nucl Mater 503:279–289

    Article  Google Scholar 

  18. Ezz-Eldin FM, Abd-Elaziz TD, Elalaily NA (2010) Effect of dilute HF solutions on chemical, optical, and mechanical properties of soda–lime–silica glass. Mater Sci 45:5937–5949

    Article  CAS  Google Scholar 

  19. Clark DE, Pantano CG, Hench LL (1979) Corrosion of glass. Books for industry, New York

    Google Scholar 

  20. Rana MA, Douglas R (1961) The reaction between glass and water. Part 1. Phys Chem Glasses 2:179–195

  21. Rana MA, Douglas R (1961) The reaction between glass and water. Part 2. Phys Chem Glasses 2:196–204

  22. Ojovan MI, Pankov A, WE Lee (2006) The ion exchange phase in corrosion of nuclear waste glasses. Nucl Mater 358:57–68

    Article  CAS  Google Scholar 

  23. Bacon FR (1968) The chemical durability of silicate glass. The Glass Ind 49:442–449

  24. Ojovan MI, Lee WE (2005) Immobilization of Radioactive Wastes in Glass. In: Elsevier Science (eds) An introduction to nuclear waste immobilization. Elsevier, Amesterdam

    Chapter  Google Scholar 

  25. Sheng J, Luo S, Tang B (1999) The leaching behavior of borate waste glass SL-1. Waste Manag 19:401–407

    Article  CAS  Google Scholar 

  26. El batal HA, Azooz MA, Saad EA, Ezz ELDin FM, Amin MS (2018) Corrosion behavior mechanism of borosilicate glasses towards different leaching solutions evaluated by the grain method and FTIR spectral analysis before and after gamma irradiation. Silicon 10:1139–1149

  27. Bunker BC, Arnold GW, Day DE, Bray PJ (1986) The effect of molecular structure on borosilicate glass leaching. Non-Cryst Solids 87:226–253

    Article  CAS  Google Scholar 

  28. Chick LA, Piepel GF, Mellinger GB, May RP, Gray WJ, Buckwalter CQ (1981) Battelle Pacific northwest labs., Richland, WA (USA) https://doi.org/10.2172/6270428

  29. Bunker BC (1994) Molecular mechanisms for corrosion of silica and silicate glasses. Non-Cryst Solids 179:300–308

    Article  CAS  Google Scholar 

  30. El Badry KM, Moustafa FA, Moenis AA, El Batal FH (2002) Corrosion behavior of some selected bioglasses by different aqueous solutions. Glass Technol Eur Glass Sci Tech Part A 43:162–170

  31. El-Alaily NA, Abd-Elaziz TD, Soliman L (2015) Effect of iron slag on the corrosion resistance of soda lime silicate glass. Silicon 10:11–20

    Article  Google Scholar 

  32. Marzouk MA (2012) Optical characterization of some rare earth ions doped bismuth borate glasses and effect of gamma irradiation. Mol Struct 1019:80–90

    Article  CAS  Google Scholar 

  33. Rao KJ (2002) Structural chemistry of glasses. Elsevier, Amsterdam

    Google Scholar 

  34. Abou Hussein EM, El-Alaily NA (2018) Study on the Effect of Gamma Radiation on Some Spectroscopic and Electrical Properties of Lithium Borate Glasses. Inorg Organomet Polym 28:1214–1225

    Article  CAS  Google Scholar 

  35. Rachkovskaya GE, Zakharevich GB (2004) Properties, Structure, and Application of Low-Melting Lead–Bismuth Glasses. Glas Ceram 61:9–12

    Article  CAS  Google Scholar 

  36. Taveri G, Tousek J, Bernardo E, Toniolo N, Boccaccini AR, Dlouhy I (2017) Proving the role of boron in the structure of fly-ash/borosilicate glass based geopolymers. Mater Letters 200:105–108

    Article  CAS  Google Scholar 

  37. Ezz El-Din FM, El Alaily NA, El-Batal HA (1992) Density and refractive index of some γ-irradiated alkali silicate glasses. Radioanal Nucl Chem 163:267–275

    Article  CAS  Google Scholar 

  38. Arora M, Baccaro S, Sharma G, Singh DP (2009) Radiation effects on PbO–Al2O3–B2O3–SiO2 glasses by FTIR spectroscopy. Nucl Instrum Methods Phys Res B 267:817–820

    Article  CAS  Google Scholar 

  39. Abdelghany AM, ElBatal HA (2014) Gamma-rays interactions on optical, FTIR absorption and ESR spectra of 3d transition metals-doped sodium silicophosphate glasses. Mol Struct 1067:138–146

    Article  CAS  Google Scholar 

  40. Abdelghany AM, El-Damrawi G, Oraby AH, Madshal MA (2018) Optical and FTIR structural studies on CoO-doped strontium phosphate glasses. Non-Cryst Solids 499:153–158

    Article  CAS  Google Scholar 

  41. Stoch L, Środa M (1999) Infrared spectroscopy investigation of oxide glasses structure. Mol Struct 511–512:77–84

  42. Nattapol L, Panida P, Pinit K, Phetlada K, Weerinradah T, Ratchadaporn P (2016) Boron and pentavalent vanadium local environments in binary vanadium borate glasses. Non-Cryst Solids 453:118–124

  43. Dunken H, Doremus RH (1987) Short time reactions of a Na2O-CaO-SiO2 glass with water and salt solutions. Non-Cryst Solids 92:61–72

    Article  CAS  Google Scholar 

  44. El-Batal FH (2004) Gamma rays interaction with some sodium borate glasses containing MoO3. Egypt J Chem 47:101–126

  45. Sharma G, Singh K, Manupriya MS, Singh H, Narang SB (2006) Effect of gamma irradiation on optical and physical properties of PbO–Bi2O3–B2O3 glasses. Radiat Phys Chem 75:959–966

  46. Manupriya K, Thind S, Sharma G, Singh K (2007) Soluble borate glasses: in vitro analysis. Amer Ceram Soc 90:467–471

  47. Primak W (1972) Mechanism for the Radiation Compaction of Vitreous Silica. Appl Phys 43:2745–2754

    Article  CAS  Google Scholar 

  48. Ahmed AA, Abbas AF, Youssof IM (1995) Attack of lead crystal glass by aqueous solution of ethyl and methyl alcohol: proceedings XVII International Congress on glass. Chinese Ceram Soc 3:239–244

  49. Perera G, Doremus R (1991) Dissolution Rates of Silicate Glasses in Water at pH 7. Am Ceram Soc 74:1269–1274

    Article  CAS  Google Scholar 

  50. Jincheng D, Cormack AN (2005) The structure of erbium doped sodium silicate glasses. Non-Cryst Solid 351:2263–2276

  51. Ashok B, Kumar RV, Kistaiah P (2015) Effect of alkaline earths on spectroscopic and structural properties of Cu2+ ions-doped lithium borate glasses. Non-Cryst Solids 426:47–54

  52. De Aza AH, Turrillas X, Rodriguez MA, Duran T, Pena P (2014) Time-resolved powder neutron diffraction study of the phase transformation sequence of kaolinite to mullite. Eur Ceram Soc 34:1409–1421

  53. Hua Gui, Cui Li, Changwei Lin, Qian Zhang, ZhiweiLuo, Lei Han, Jianlei Liu, Taoyong Liu, Anxian Lu (2018) Glass forming, crystallization, and physical properties of MgO-Al2O3-SiO2-B2O3 glass-ceramics modified by ZnO replacing MgO. Eur Ceram. https://doi.org/10.1016/j.jeurceramsoc.2018.10.002

    Article  CAS  Google Scholar 

  54. El-Egili K (2003) Infrared studies of Na2O-B2O3-Si2O and A12O3; Na2O - B2O3- Si2O glasses. Physica B 325:340–348

  55. El Batal FH, Ashour AH (2003) Effect of gamma irradiation on the electrical conductivity of ternary borate glasses. J Mater Chem Phys 77:677–686

  56. Alessi A, Girard S, Cannas M, Agnello S, Boukenter A, OuerdaneY (2012) Influence of drawing conditions on the properties andradiation sensitivities of pure-silica-core optical fibers. J Light Technol 30:1726–1732

    Article  CAS  Google Scholar 

  57. Agnello S, Boscaino R, Canas M, Gelardi FM (2000) Creation of paramagnetic defects by gamma irradiation in amorphous silica. Appl Magn Res 19:579–585

    Article  CAS  Google Scholar 

  58. Mahmud HH, Mansour A, Ezz-Eldin FM (2014) Generation and bleaching of E′-centers induced in a-SiO2 by γ-irradiation. Radioanal Nucl Chem 302:261–272

    Article  CAS  Google Scholar 

  59. N’Dri K, Sei J, Houphouet-Boigny D, Kra G, Jumas JC (2007) Estimation of glass-forming ability and glass stability of Sb2S3-As2S3-Sb2Te3 glasses by thermal properties. Appl Sci 7:3167–3176

    Article  Google Scholar 

  60. Jain PK, Deepika, Saxena NS (2009) Glass transition, thermal stability and glass-forming ability of Se90In10-xSbx (x = 0, 2, 4, 6, 8, 10) chalcogenide glasses. Philos Mag 89:641–650

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Abou Hussein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abou Hussein, E.M. Vitrified Municipal Waste for the Immobilization of Radioactive Waste: Preparation and Characterization of Borosilicate Glasses Modified with Metal Oxides. Silicon 11, 2675–2688 (2019). https://doi.org/10.1007/s12633-018-0056-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-018-0056-1

Keywords

Navigation