Skip to main content
Log in

Ecological and Geochemical Assessment of the State of Soils in the City of Baikal’sk according to the Content of Polycyclic Aromatic Hydrocarbons

  • DEGRADATION, REHABILITATION, AND CONSERVATION OF SOILS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The pollution of the topsoil in the city of Baikal’sk (Irkutsk oblast) under the influence of industrial emissions and wastes of the Baikal Pulp and Paper Mill (BPPM) was studied. The contents of 16 individual polycyclic aromatic hydrocarbons (PAHs) in samples of urban and background soils taken during the soil geochemical survey in the summer of 2019 were analyzed. Relatively low contents of PAHs were found in lignin sludge from the BPPM and ash from the combined heat and power station (CHPS). The concentration of total PAHs in CHPS ash reaches 46 mg/kg with a predominance of low molecular weight compounds (the proportion of naphthalene and its homologues is 24% and 34% of the total PAHs, respectively). Among high molecular weight PAHs, 5-nuclear benzo(b)fluoranthene dominates (16%). In lignin sludge, the amount of PAHs is 7.16 mg/kg with a predominance of benzo(b)fluoranthene (83%). In soils of Baikal’sk, the mean total content of PAHs (38.4 mg/kg) is five times higher than the background content. In urban soils, 4–5-nuclear fluoranthene (61.1%) and benzo(b)fluoranthene (29.4%) prevail. This enables us to assign soil pollution to the fluoranthene type. Soils of the motor traffic (total content of PAHs is 105 mg/kg) and industrial (59.5 mg/kg) zones are most strongly polluted and display contrasting geochemical anomalies of PAHs. Land use zones of the city may be arranged in the following sequence with respect to the amount of PAHs: motor traffic > industrial > residential single-story > railway transport > residential multi-story > recreational zone. Several local anomalies with increased contents of PAHs form two large pollution halos in the west and east of the city. The leading factors in the accumulation of high molecular weight PAHs in soils include acid–alkaline conditions and soil organic matter, while the accumulation of low molecular weight polyarenes is mainly controlled by pH. The environmental hazard of pollution of Baikal’sk soils with polyarenes is by 83.5% related to benzo(b)fluoranthene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. A. V. Bogdanov, K. V. Fedotov, A. S. Shatrova, and G. G. Popova, “Use of frozen colloidal sediments of sludge-lignin of OAO “Baikal Pulp and Paper Mill” as a soil," Ekol. Prom-st. Ross. 24 (1), 24–29 (2020). https://doi.org/10.18412/1816-0395-2020-1-24-29

    Article  Google Scholar 

  2. A. V. Bogdanov, A. S. Shatrova, O. V. Tyukalova, and A. I. Shkrabo, “Environmentally friendly technology for processing accumulated colloidal sediments of sludge-lignin OAO "Baikal Pulp and Paper Mill”,” Izv. VUZov, Prikl. Khim. Biotekhnol. 8 (3), 126–134 (2018). https://doi.org/10.21285/2227-2925-2018-8-3-126-134

    Article  CAS  Google Scholar 

  3. V. A. Vetrov, N. I. Belova, A. L. Poslovin, et al., “Monitoring the levels of heavy metals and trace elements in the natural environments of Lake Baikal. Preliminary results and problems,” in Problems of Regional Monitoring of the State of Lake Baikal (Gidrometeoizdat, Leningrad, 1983), pp. 66–77 [in Russian].

    Google Scholar 

  4. V. A. Vetrov and Z. A. Klimashevskaya, “The influence of gas and dust emissions from the Baikal pulp and paper mill on the atmospheric flow of chemicals in the surrounding region,” in Protection of Nature from Pollution by Pulp and Paper Industry Enterprises (Leningrad, 1985), pp. 113–125 [in Russian].

  5. V. A. Vetrov and A. L. Poslovin, “Contribution of atmospheric emissions from the Baikal Pulp and Paper Mill to the flow of dust and some chemical elements from the atmosphere to the surface of Southern Baikal,” in Cycle of Matter and Energy in Water Bodies. No. 8. Anthropogenic Influence on Water Bodies: Proceedings of 5th All-Union Limnological Meeting (Irkutsk, 1981), pp. 21–23.

  6. A. N. Gennadiev, Yu. I. Pikovskii, M. A. Smirnova, A. P. Zhidkin, and R. G. Kovach, “Hydrocarbon state of soils in background taiga landscapes (southwestern part of the Ustyansky Plateau),” Vestn. Mosk. Univ., Ser. 5: Geogr., No. 3, 90–97 (2016).

  7. Geochemistry of Polycyclic Aromatic Hydrocarbons in Rocks and Soils, Ed. by A. N. Gennadiev and Yu. I. Pikovskii (Mosk. Univ., Moscow, 1996) [in Russian].

    Google Scholar 

  8. M. I. Gerasimova, M. N. Stroganova, N. V. Mozharova, and T. V. Prokof’eva, Anthropogenic Soils (Genesis, Geography, Reclamation) (Oikumena, Moscow, 2003) [in Russian].

    Google Scholar 

  9. K. S. Golokhvast, V. V. Chernyshev, and S. M. Ugai, “Vehicle emissions and human ecology (literature review),” Ekol. Chel., No. 1, 9–14 (2016). https://doi.org/10.33396/1728-0869-2016-1-9-14

  10. State Report on the State and Protection of the Environment of the Irkutsk Oblast in 2011. Ministry of Natural Resources and Ecology of the Irkutsk Oblast (Megaprint, Irkutsk, 2012).

  11. N. S. Kasimov, Ecogeochemistry of Landscapes (IP Filimonov M.V., Moscow, 2013) [in Russian].

    Google Scholar 

  12. N. E. Kosheleva, N. S. Kasimov, and D. V. Vlasov, “Factors of the accumulation of heavy metals and metalloids at geochemical barriers in urban soils,” Eurasian Soil Sci. 48 (5), 476–492 (2015). https://doi.org/10.1134/S1064229315050038

    Article  CAS  Google Scholar 

  13. N. E. Kosheleva and E. M. Nikiforova, “Multiyear dynamics and factors of accumulation of benzo(a)pyrene in urban soils (on the example of the Eastern Administrative Okrug, Moscow),” Moscow Univ. Soil Sci. Bull. 66 (2), 65–74 (2011).

    Article  Google Scholar 

  14. N. E. Kosheleva, E. M. Nikiforova, I. V. Timofeev, and Yu. A. Zavgorodnyaya, “Polycyclic aromatic hydrocarbons in soils of Severobaikalsk,” Geogr. Prir. Resur., No. 4. (2023) (in press).

  15. Yu. N. Krasnoshchekov and V. N. Gorbachev, Forest Soils of the Lake Baikal Basin (Nauka, Sib. Otd., Novosibirsk, 1987) [in Russian].

  16. P. P. Krechetov and T. M. Dianova, Soil Chemistry. Analytical Methods of Study (Geogr. Fak. Mosk. Gos. Univ., Moscow, 2009) [in Russian].

    Google Scholar 

  17. A. I. Kuznetsova, O. A. Proidakova, and V. A. Vetrov, “Elemental composition of atmospheric emissions from cellulose sulfate production,” in Proceedings of 1st All-Union Meeting “Geochemistry of Technogenesis” (T. Sh. Irkutsk, 1985), pp. 96–99.

  18. V. A. Kuz’min, Soils of Cisbaikalia and Northern Transbaikalia (Nauka, Novosibirsk, 1988).

    Google Scholar 

  19. N. L. Linevich and L. P. Sorokina, “Climatic potential for atmospheric self-purification: experience of multi-scale assessment,” Geogr. Prir. Resur., No. 2, 160–165 (1992).

  20. V. N. Maistrenko and N. A. Klyuev, Ecological and Analytical Monitoring of Persistent Organic Pollutants (BINO-M. Lab. Znanii, Moscow, 2004) [in Russian].

  21. T. I. Makovskaya and S. G. D’yachkova, “Organic pollutants in the soil and vegetation cover of the zone of influence of sleeper impregnation production,” Vestn. Krasnoyarsk. Gos. Agrar. Univ., No. 6, 67–72 (2009).

  22. E. N. Maksimova and E. V. Simonova, “Estimation of the state of BPPM sludge-lignin according to sanitary and microbiological indicators,” Aktual. Probl. Gumanitarnykh Est. Nauk, No. 5-1. 35–38 (2014).

  23. E. Yu. Maksimova, A. S. Tsibart, and E. V. Abakumov, “Polycyclic aromatic hydrocarbons in soils affected by crown and ground fires,” Izv. Samar. Nauchn. Tsentra Ross. Akad. Nauk 15 (3), 63–68 (2013).

    Google Scholar 

  24. A. S. Martynova and V. P. Martynov, “Soils of the northern part of the Baikal State Reserve,” in Protection and Rational Use of Soils in Western Transbaikalia (Buryat. Fil. Sib. Otd. Akad. Nauk SSSR, Ulan-Ude, 1980), pp. 34–46 [in Russian].

    Google Scholar 

  25. A. V. Medvedeva, “Microbial degradation of polycyclic aromatic hydrocarbons,” Izv. Nats. Akad. Nauk Resp. Kaz. Ser. Biol. Med., No. 5, 98–101 (2013).

  26. T. I. Morozova, T. A. Oskolkova, and A. S. Pleshanov, “The state of the fir forests of Khamar-Daban in the zone of influence of atmospheric emissions from the Baikal Pulp and Paper Mill,” Sib. Ekol. Zh., No. 4, 701–706 (2005).

  27. E. M. Nikiforova and T. A. Alekseeva, “Polycyclic aromatic hydrocarbons in the soils of roadside ecosystems of Moscow,” Eurasian Soil Sci. 35 (1), 42–52 (2002).

    Google Scholar 

  28. E. M. Nikiforova and N. E. Kosheleva, “Polycyclic aromatic hydrocarbons in urban soils (Moscow, Eastern District),” Eurasian Soil Sci. 44 (9), 1018–1030 (2011). https://doi.org/10.1134/S1064229311090092

    Article  CAS  Google Scholar 

  29. E. Yu. Konstantinova, S. N. Sushkova, T. M. Minkina, E. M. Antonenko, A. O. Konstantinov, and V. Yu. Khoroshavin, “Polycyclic aromatic hydrocarbons in soils of industrial and residential areas of Tyumen,” Izv. Tomsk. Politekh. Univ. Inzhiniring Georesur. 329 (8), 66–79 (2018).

    Google Scholar 

  30. Soil Map of the RSFSR. Scale 2 500 000 (GUGK, Moscow, 1988).

  31. Production of Cellulose, Wood Pulp, Paper, Cardboard. ITS1-2015 (Moscow, 2015).

  32. M. P. Ratanova, Ecological Foundations of Social Production (Smolensk. Gos. Univ., Smolensk, 1999) [in Russian].

    Google Scholar 

  33. F. Ya. Rovinskii, T. A. Teplitskaya, and T. A. Alekseeva, Background Monitoring of Polycyclic Aromatic Hydrocarbons (Gidrometeoizdat, Leningrad, 1988) [in Russian].

    Google Scholar 

  34. I. A. Rod’kina, N. S. Kravchenko, I. G. Bondarik, E. N. Samarin, and O. V. Zerkal’, “On the issue of immobilization of waste from the Baikal Pulp and Paper Mill to reduce the toxicological load on the ecosystem of Lake Baikal,” in Lomonosov Readings–2018. Section Geology (Geol. Fak. Mosk. Gos. Univ., Moscow, 2018).

    Google Scholar 

  35. I. A. Rod’kina, E. N. Samarin, O. V. Zerkal’, M. S. Chernov, and N. S. Kravchenko, “Neutralization of the impact of the Baikal Pulp and Paper Mill on the environment. Part 1,” Tverd. Bytovye Otkhody, No. 3, 49–52 (2021).

    Google Scholar 

  36. SanPiN 1.2.3685-21 “Hygienic Standards and Requirements for Ensuring the Safety and (or) Harmlessness of Environmental Factors to Humans” (2021), pp. 751–754.

  37. Territorial Development of Baikalsk and Its Natural Zone (Irkutsk, 2003) [in Russian].

  38. L. L. Ubugunov, V. I. Ubugunova, I. A. Belozertseva, A. B. Gyninova, A. A. Sorokovoi, and V. L. Ubugunov, “Soils of the Lake Baikal drainage basin: results of research for 1980–2017,” Geogr. Nat. Resour. 39 (4), 332–342 (2018). https://doi.org/10.1134/S1875372818040066

    Article  Google Scholar 

  39. A. P. Khaustov and M. M. Redina, “Fractionation of polycyclic aromatic hydrocarbons at geochemical barriers,” Vestn. S.-Peterb. Univ. Nauki Zemle 66 (1), 123–143 (2021). https://doi.org/10.21638/spbu07.2021.108

    Article  Google Scholar 

  40. A. S. Tsibart and A. N. Gennadiev, “Associations of polycyclic aromatic hydrocarbons in fire-affected soils,” Vestn. Mosk. Univ., Ser. 5: Geogr., No. 3, 13–19 (2011).

  41. A. S. Tsibart and A. N. Gennadiev, “Polycyclic aromatic hydrocarbons in soils: sources, behavior, and indication significance (a review),” Eurasian Soil Sci. 46 (7), 728–741 (2013). https://doi.org/10.1134/S1064229313070090

    Article  CAS  Google Scholar 

  42. Ts. Kh. Tsybzhitov and V. P. Martynov, “Structure of the soil cover of Western Transbaikalia,” in Genesis and Fertility of Soils in the Western Baikal Region (Ulan-Ude, 1983), pp. 3–22 [in Russian].

  43. Ts. Kh. Tsybzhitov and V. I. Ubugunova, Genesis and Geography of Taiga Soils in the Lake Baikal Basin (Buryat. Kn. Izd., Ulan-Ude, 1992) [in Russian].

    Google Scholar 

  44. S. S. Chernyanskii, A. N. Gennadiev, T. A. Alekseeva, and Yu. I. Pikovskii, “Organoprofile of sod-gley soil with a high level of pollution with polycyclic aromatic hydrocarbons,” Pochvovedenie, No. 11, 1312–1322 (2001).

    Google Scholar 

  45. A. S. Shatrova, A. V. Bogdanov, A. I. Shkrabo, and O. V. Alekseeva, “Technology for processing waste from the pulp and paper industry into soil using natural processes,” Izv. Tomsk. Politekh. Univ. Inzhiniring Georesur. 333 (8), 153–162 (2022). https://doi.org/10.18799/24131830/2022/8/3658

    Article  Google Scholar 

  46. E. I. Shurubor and A. N. Gennadiev, “Migration and accumulation of polycyclic aromatic hydrocarbons in irrigated soils of the Black Lands (Kalmykia),” Pochvovedenie, No. 10, 97–111 (1992).

    Google Scholar 

  47. Ecogeochemistry of Urban Landscapes, Ed. by N. S. Kasimov (Mosk. Univ., Moscow, 1995) [in Russian].

    Google Scholar 

  48. Ecological Atlas of the Basin of Lake Baikal (Izd. Inst. Geogr. im. V. B. Sochavy Sib. Otd. Ross. Akad. Nauk, Irkutsk, 2015).

  49. E. V. Yakovleva and D. N. Gabov, “Mechanisms of accumulation of polycyclic aromatic hydrocarbons in soils and plants of the tundra zone of the Komi Republic under the influence of coal mining and combustion,” Antropog. Transform. Prir. Sredy, No. 4, 207–211 (2018).

    Google Scholar 

  50. E. V. Yakovleva, D. N. Gabov, V. A. Beznosikov, and B. M. Kondratenok, “Accumulation of polycyclic aromatic hydrocarbons in soils and plants of the tundra zone under the impact of coal-mining industry,” Eurasian Soil Sci. 49 (11), 1319–1328 (2016). https://doi.org/10.1134/S1064229316090143

    Article  CAS  Google Scholar 

  51. T. M. Ahmed, C. Bergvall, and R. Westerholm, “Emissions of particulate associated oxygenated and native polycyclic aromatic hydrocarbons from vehicles powered by ethanol/gasoline fuel blends,” Fuel 214, 381–385 (2018). https://doi.org/10.1016/j.fuel.2017.11.059

    Article  CAS  Google Scholar 

  52. O. O. Alegbeleye, B. O. Opeolu, and V. A. Jackson, “Polycyclic aromatic hydrocarbons: a critical review of environmental occurrence and bioremediation,” Environ. Manage. 60, 758–783 (2017). https://doi.org/10.1007/s00267-017-0896-2

    Article  Google Scholar 

  53. F. Amato, O. Favez, M. Pandolfi, A. Alastuey, X. Querol, S. Moukhtar, B. Bruge, S. Verlhac, J. A. G. Orza, N. Bonnaire, T. Le Priol, J.-F. Petit, and J. Sciare, “Traffic induced particle resuspension in Paris: Emission factors and source contributions,” Atmos. Environ. 129, 114–124 (2016). https://doi.org/10.1016/j.atmosenv.2016.01.022

    Article  CAS  Google Scholar 

  54. F. Amato, M. Pandolfi, T. Moreno, M. Furger, J. Pey, A. Alastuey, N. Bukowiecki, A. S. H. Prevot, U. Baltensperger, and X. Querol, “Sources and variability of inhalable road dust particles in three European cities,” Atmos. Environ. 45, 6777–6787 (2011). https://doi.org/10.1016/j.atmosenv.2011.06.003

    Article  CAS  Google Scholar 

  55. S. Aubin and J. P. Farant, “Benzo(b)fluoranthene, a potential alternative to benzo(a)pyrene as an indicator of exposure to airborne PAHs in the vicinity of Söderberg aluminum smelters,” J. Air Waste Manage. Assoc. 50, 2093–2101 (2000). https://doi.org/10.1080/10473289.2000.10464236

    Article  CAS  Google Scholar 

  56. L. Borda-da-Agua, R. Barrientos, P. Beja, and H. M. Pereira, Railway Ecology (SpringerOpen, 2017). https://doi.org/10.1007/978-3-319-57496-7

  57. A. Demetriades and M. Birke, Urban Geochemical Mapping Manual: Sampling, Sample Preparation, Laboratory Analysis, Quality Control Check, Statistical Processing and Map Plotting (EuroGeoSurveys, Brussels, 2015). https://doi.org/10.1016/j.gexplo.2017.10.024

  58. O. Devos, E. Combet, P. Tassel, and L. Paturel, “Exhaust emissions of PAHs of passenger cars,” Polycyclic Aromat. Compd. 26, 69–78 (2006). https://doi.org/10.1080/10406630500519346

    Article  CAS  Google Scholar 

  59. X. Fang, L. Wu, Q. Zhang, J. Zhang, and H. Mao, “Characteristics, emissions and source identifications of particle polycyclic aromatic hydrocarbons from traffic emissions using tunnel measurement,” Transp. Res. Part D 67, 674–684 (2019). https://doi.org/10.1016/j.trd.2018.02.021

    Article  Google Scholar 

  60. H. Fengpeng, Z. Zhang, W. Yunyang, L. Song, W. Liang, and B. Qingwei, “Polycyclic aromatic hydrocarbons in soils of Beijing and Tianjin region: vertical distribution, correlation with TOC and transport mechanism,” J. Environ. Sci. 21, 675–685 (2009). https://doi.org/10.1016/S1001-0742(08)62323-2

    Article  CAS  Google Scholar 

  61. W. Fu, M. Xu, K. Sun, L. Hu, W. Cai, C. Dai, and Y. Jia, “Biodegradation of phenanthrene by endophytic fungus Phomopsis liquidambari in vitro and in vivo,” Chemosphere 203, 160–169 (2018). https://doi.org/10.1016/j.chemosphere.2018.03.164

    Article  CAS  Google Scholar 

  62. B. Gevao and K. C. Jones, “Kinetics and potential significance of polycyclic aromatic hydrocarbon desorption from creosote-treated wood,” Environ. Sci. Technol. 32 (5), 640–646 (1998). https://doi.org/10.1021/es9706413

    Article  CAS  Google Scholar 

  63. X. Hao, X. Zhang, X. Cao, X. Shen, J. Shi, and Z. Yao, “Characterization and carcinogenic risk assessment of polycyclic aromatic and nitro-polycyclic aromatic hydrocarbons in exhaust emission from gasoline passenger cars using on-road measurements in Beijing, China,” Sci. Total Environ. 645, 347–355 (2018). https://doi.org/10.1016/j.scitotenv.2018.07.113

    Article  CAS  Google Scholar 

  64. Y. Huang, Q. Sui, S. Lyu, J. Wang, S. Huang, W. Zhao, B. Wang, D. Xu, M. Kong, Y. Zhang, and G. Yu, “Tracking emission sources of PAHs in a region with pollution-intensive industries, Taihu Basin: from potential pollution sources to surface water,” Environ. Pollut. 264, 114674 (2020). https://doi.org/10.1016/j.envpol.2020.114674

    Article  CAS  Google Scholar 

  65. J. Jacob, “The significance of polycyclic aromatic hydrocarbons as environmental carcinogens. 35 years research on PAH – a retrospective,” Polycyclic Aromat. Compd. 28, 242–272 (2008). https://doi.org/10.1080/10406630802373772

    Article  CAS  Google Scholar 

  66. A. Kim, M. Park, T. K. Yoon, W. S. Lee, J. J. Ko, K. Lee, and J. Bae, “Maternal exposure to benzo(b)fluoranthene disturbs reproductive performance in male offspring mice,” Toxicol. Lett. 203, 54–61 (2011). https://doi.org/10.1016/j.toxlet.2011.03.003

    Article  CAS  Google Scholar 

  67. M. Kohler and T. Künniger, “Emissions of polycyclic aromatic hydrocarbons (PAH) from creosoted railroad ties and their relevance for life cycle assessment (LCA),” HolzalsRoh- und Werkstoff 61, 117–124 (2003). https://doi.org/10.1007/s00107-003-0372-y

  68. S. Liu, C. Zhan, J. Zhang, H. Liu, Y. Xiao, L. Zhang, J. Guo, X. Liu, X. Xing, and J. Cao, “Polycyclic aromatic hydrocarbons in railway stations dust of the mega traffic hub city, central China: human health risk and relationship with black carbon,” Ecotoxicol. Environ. Saf. 205, 111155 (2020). https://doi.org/10.1016/j.ecoenv.2020.111155

    Article  CAS  Google Scholar 

  69. B. Maliszewska-Kordybach, B. Smreczak, and A. Klimkowicz-Pawlas, “Effects of anthropopressure and soil properties on the accumulation of polycyclic aromatic hydrocarbons in the upper layer of soils in selected regions of Poland,” Appl. Geochem. 24, 1918–1926 (2009). https://doi.org/10.1016/j.apgeochem.2009.07.005

    Article  CAS  Google Scholar 

  70. E. Manoli, A. Chelioti-Chatzidimitriou, K. Karageorgou, A. Kouras, D. Voutsa, C. Samara, and I. Kampanos, “Polycyclic aromatic hydrocarbons and trace elements bounded to airborne PM 10 in the harbor of Volos, Greece: implications for the impact of harbor activities,” Atmos. Environ. 167, 61–72 (2017). https://doi.org/10.1016/j.atmosenv.2017.08.001

    Article  CAS  Google Scholar 

  71. M. Mętrak, M. Chmielewska, B. Sudnik-Wójcikowska, B. Wiłkomirski, T. Staszewski, and M. Suska-Malawska, “Does the function of railway infrastructure determine qualitative and quantitative composition of contaminants (PAHs, heavy metals) in soil and plant biomass?,” Water, Air Soil Pollut. 226, 1–12 (2015). https://doi.org/10.1007/s11270-015-2516-1

    Article  CAS  Google Scholar 

  72. C. Nisbet and P. LaGoy, “Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs),” Regul. Toxicol. Pharmacol. 16, 290–300 (1992). https://doi.org/10.1016/0273-2300(92)90009-X

    Article  CAS  Google Scholar 

  73. P. Z. Qi, C. K. Qu, S. Albanese, A. Lima, D. Cicchella, D. Hope, P. Cerino, A. Pizzolante, H. Zheng, J. J. Li, and B. De Vivo, “Investigation of polycyclic aromatic hydrocarbons in soils from Caserta provincial territory, southern Italy: spatial distribution, source apportionment, and risk assessment,” J. Hazard. Mater. 383, 121158 (2020). https://doi.org/10.1016/j.jhazmat.2019.121158

    Article  CAS  Google Scholar 

  74. E. Stogiannidis and R. Laane, “Source characterization of polycyclic aromatic hydrocarbons by using their molecular indices: an overview of possibilities,” Rev. Environ. Contam. Toxicol. 234, 49–133 (2015). https://doi.org/10.1007/978-3-319-10638-0_2

    Article  CAS  Google Scholar 

  75. L. Tang, X.-Y. Tang, Y.-G. Zhu, M.-H. Zheng, and Q.‑L. Maio, “Contamination of polycyclic aromatic hydrocarbons (PAHs) in urban soils in Beijing, China,” Environ. Int. 31, 822–828 (2005). https://doi.org/10.1016/j.envint.2005.05.031

    Article  CAS  Google Scholar 

  76. A. Valavanidis, K. Fiotakis, T. Vlahogianni, E. B. Bakeas, S. Triantafillaki, V. Paraskevopoulou, and M. Dassenakis, “Characterization of atmospheric particulates, particle-bound transition metals and polycyclic aromatic hydrocarbons of urban air in the centre of Athens (Greece),” Chemosphere 65, 760–768 (2006). https://doi.org/10.1016/j.chemosphere.2006.03.052

    Article  CAS  Google Scholar 

  77. J. Wang, X. Liu, G. Liu, Z. Zhang, B. Cui, J. Bai, and W. Zhang, “Size effect of polystyrene microplastics on sorption of phenanthrene and nitrobenzene,” Ecotoxicol. Environ. Saf. 173, 331–338 (2019). https://doi.org/10.1016/j.ecoenv.2019.02.037

    Article  CAS  Google Scholar 

  78. Q. Wang, Q. Li, Y. Tsuboi, Y. Zhang, H. Zhang, and J. Zhang, “Decomposition of pyrene by steam reforming: the effects of operational conditions and kinetics,” Fuel Process. Technol. 182, 88–94 (2018). https://doi.org/10.1016/j.fuproc.2018.08.008

    Article  CAS  Google Scholar 

  79. B. Wiłkomirski, H. Galera, T. Staszewski, B. Sudnik-Wojcikowska, and M. Malawska, “Railway tracks—habitat conditions, contamination, floristic settlement— a review,” Environ. Nat. Resour. Res. 2, 86–95 (2012). https://doi.org/10.5539/enrr.v2n1p86

    Article  Google Scholar 

  80. B. Wiłkomirski, B. Sudnik-Wojcikowska, H. Galera, M. Wierzbicka, and M. Malawska, “Railway transportation as a serious source of organic and inorganic pollution,” Water, Air Soil Pollut. 218, 333–345 (2011). https://doi.org/10.1007/s11270-010-0645-0

    Article  CAS  Google Scholar 

  81. M. B. Yunker, R. W. Macdonald, R. Vingarzan, R. H. Mitchell, D. Goyette, and S. Sylvestre, “PAHs in the Fraser River Basin: a critical appraisal of PAH ratios as indicators of PAH source and composition,” Org. Geochem. 33, 489–515 (2002). https://doi.org/10.1016/S0146-6380(02)00002-5

    Article  CAS  Google Scholar 

  82. J. Zhang, C. Zhan, H. Liu, T. Liu, R. Yao, T. Hu, W. Xiao, X. Xing, H. Xu, and J. Cao, “Characterization of polycyclic aromatic hydrocarbons (PAHs), iron and black carbon within street dust from a steel industrial city, Central China,” Aerosol Air Qual. Res. 16, 2452–2461 (2016). https://doi.org/10.4209/aaqr.2016.02.0085

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research and the Russian Geographical Society, project no. 17-29-05055/17. The estimation of the ecological danger of the contamination with PAHs was supported by the Russian Science Foundation, project no. 19-77-30004-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. B. Zhaxylykov.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by I. Bel’chenko

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

11475_2024_2085_MOESM1_ESM.pdf

Fig. S1 . Distribution of fluoranthene in soils of Baikal’sk for various combinations of anthropogenic and landscape factors. The mean amount of PAHs, the variation coefficient Cv, and the number of sampling sites n are given for each end node. Land use zones: (A) industrial, (B) recreational, (C) residential multi–story, (D) residential single-story, (E) motor traffic, and (F) railway transport.

Fig. S2 . Distribution of benzo(b)fluoranthene in soils of Baikal’sk for various combinations of anthropogenic and landscape factors. The mean amount of PAHs, the variation coefficient Cv, and the number of sampling sites n are given for each end node. The interpretation of the designations of land use zones is given in Fig. S1.

Fig. S3 . The distribution of the total PAHs in soils of Baikal’sk for various combinations of anthropogenic and landscape factors. The mean amount of PAHs, the variation coefficient Cv, and the number of sampling sites n are given for each end node. The interpretation of the designations of land use zones is given in Fig. S1.

Fig. S4 . Distribution of the (A) high molecular weight and (B) low molecular weight PAHs in soils of Baikal’sk for various combinations of anthropogenic and landscape factors. The mean amount of PAHs, the variation coefficient Cv, and the number of sampling sites n are given for each end node. The interpretation of the designations of land use zones is given in Fig. S1.

Table S1 . Variability of the content of PAHs (Cv, %) in the upper horizon of background mountainous podburs (Skeletic Entic Podzols) and urban soils with respect to land use zones of the city of Baikal’sk

Table S2 . Indicator ratios of PAHs in the upper horizon of urban soils with respect to land use zones of the city of Baikal’sk

Table S3 . Toxic equivalence factors (TEF) for some PAHs [72]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosheleva, N.E., Nikiforova, E.M. & Zhaxylykov, N.B. Ecological and Geochemical Assessment of the State of Soils in the City of Baikal’sk according to the Content of Polycyclic Aromatic Hydrocarbons. Eurasian Soil Sc. 57, 692–709 (2024). https://doi.org/10.1134/S1064229323603335

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229323603335

Keywords:

Navigation