Skip to main content
Log in

Soil Pollution with Polycyclic Aromatic Hydrocarbons and Petroleum Hydrocarbons in the North of Western Siberia: Spatial Pattern and Ecological Risk Assessment

  • DEGRADATION, REHABILITATION, AND CONSERVATION OF SOILS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The assessment of soil pollution and soil toxicity in the area of oil and gas fields in tundra and northern taiga of Western Siberia was performed. The contents of petroleum hydrocarbons (HCs) and polycyclic aromatic hydrocarbons (PAHs) in soils were analyzed for four sites of sludge spills and along the winter road. Speciation of PAHs and its relationship with the HC content determined by the methods of infrared spectroscopy (HCIR) and fluorimetry (HCFL) were analyzed. The HCIR content was several times higher than the HCFL content. The high content of HCIR in soils of oil and gas production areas attested to their contamination with crude oil during well construction. An increase in the HCFL content was mainly related to the input of pyrogenic PAHs with emissions from heavy vehicles. The total PAHs content ranged from 95 to 22 114 μg/kg. Low-molecular-weight compounds—naphthalene (12%), phenanthrene (23%), and fluoranthene (16%)—predominated among PAHs, which was explained by soil contamination with light oil as a result of well drilling. The vertical migration of pollutants in the soil profile was weak, and they mainly concentrated in the upper part of the peat horizon. The distance of lateral migration of pollutants from the spill did not exceed 50–150 m and depended on the landscape and geochemical conditions. The ecological risk of soil toxicity was assessed using the contamination danger index based on the benzo[a]pyrene (BaP) toxicity equivalent and the schedule proposed by the authors. According to calculations, 62% of the studied soil samples were uncontaminated, 37% were characterized by moderate and low levels of environmental pollution risk, and one sample (<1%) corresponded to its high level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. R. S. Vasilevich, “Major and trace element compositions of hummocky frozen peatlands in the forest–tundra of northeastern European Russia,” Geochem. Int. 56 (12), 1276–1288 (2018).

    Article  Google Scholar 

  2. Yu. N. Vodyanitskii, N. A. Avetov, A. T. Savichev, S. Ya. Trofimov, and E. A. Shishkonakova, “Influence of oil and stratal water contamination on the ash composition of oligotrophic peat soils in the oil-production area (the Ob’ region),” Eurasian Soil Sci. 46 (10), 1032–1041 (2013).

    Article  Google Scholar 

  3. A. N. Gennadiev, Yu. I. Pikovskii, A. S. Tsibart, and M. A. Smirnova, “Hydrocarbons in soils: origin, composition, and behavior (review),” Eurasian Soil Sci. 48 (10), 1076–1089 (2015).

    Article  Google Scholar 

  4. A. I. Gritsenko, G. S. Akopova, and V. M. Maksimova, Ecology. Oil and Gas (Nauka, Moscow, 1997).

    Google Scholar 

  5. D. V. Moskovchenko and A. G. Babuskin, “Oil pollution of surface waters on the territory of Khanty-Mansi Autonomous Okrug-Yugra,” Ekol. Prom-st. Ross., No. 4, 34–38 (2014). https://doi.org/10.18412/1816-0395-2014-4-34-38

  6. A. A. Oborin, I. G. Kalachnikova, T. A. Maslivets, E. I. Bazenkova, O. V. Pleshcheeva, and A. I. Ogloblina, “Self-purification and reclamation of oil-contaminated soils of the Cis-Urals and Western Siberia,” in Restoration of Oil-Contaminated Soil Ecosystems (Moscow, 1988).

  7. A. Yu. Opekunov, E. S. Mitrofanova, V. V. Spasskii, M. G. Opekunova, N. A. Sheinerman, and A. V. Chernyshova, “Chemistry and toxicity of bottom sediments in small watercourses of St. Petersburg,” Water Resour. 47 (2), 282–293 (2020).

    Article  Google Scholar 

  8. M. G. Opekunova, A. Yu. Opekunov, S. Yu. Kukushkin, and I. Yu. Arestova, “Evaluation of environmental transformation in areas of hydrocarbon deposits in the north of Western Siberia,” Contemp. Probl. Ecol. 11 (1), 99–110 (2018).

    Article  Google Scholar 

  9. M. G. Opekunova, A. Yu. Opekunov, S. Yu. Kukushkin, and A. G. Ganul, “Background contents of heavy metals in soils and bottom sediments in the north of Western Siberia,” Eurasian Soil Sci. 52 (4), 380–395 (2019).

    Article  Google Scholar 

  10. Yu. I. Pikovskii, A. N. Gennadiev, S. S. Chernyanskii, and G. N. Sakharov, “The problem of diagnosing and standardizing soil pollution with oil and oil products,” Pochvovedenie, No. 9, 1132–1140 (2003).

    Google Scholar 

  11. Yu. I. Pikovskii, L. A. Korotkov, M. A. Smirnova, and R. G. Kovach, “Laboratory analytical methods for the determination of the hydrocarbon status of soils (a review),” Eurasian Soil Sci. 50 (10), 1125–1137 (2017).

    Article  Google Scholar 

  12. A. V. Sal’nikov, Losses of Oil and Oil Products (Izd. Ukhta State Tech. Univ., Ukhta, 2012) [in Russian].

  13. N. P. Solntseva, Oil Production and Geochemistry of Natural Landscapes (Mosk. Univ., Moscow, 1998) [in Russian].

    Google Scholar 

  14. A. P. Khaustov and M. M. Redina, “Geochemical markers based on concentration ratios of PAH in oils and oil-polluted areas,” Geochem. Int. 55 (1), 98–107 (2017).

    Article  Google Scholar 

  15. A. S. Tsibart and A. N. Gennadiev, “Polycyclic aromatic hydrocarbons in soils: sources, behavior, and indication significance (a review),” Eurasian Soil Sci. 46 (7), 728–741 (2013).

    Article  Google Scholar 

  16. E. A. Shtina and K. A. Nekrasova, “Algae in oil-contaminated soils,” in Restoration of Oil-Contaminated Soil Ecosystems (Nauka, Moscow, 1988), pp. 57–81 [in Russian].

    Google Scholar 

  17. E. V. Yakovleva, D. N. Gabov, and R. S. Vasilevich, “Formation of the composition of polycyclic aromatic hydrocarbons in hummocky bogs in the forest-tundra–northern tundra zonal sequence,” Eurasian Soil Sci. 55 (3), 313–329 (2022). https://doi.org/10.1134/S1064229322030140

    Article  Google Scholar 

  18. M. A. Alawi and A. L. Azeez, “Study of polycyclic aromatic hydrocarbons (PAHs) in soil samples from Al-Ahdab oil field in Waset Region, Iraq,” Toxin Rev. 35, 69–76 (2016). https://doi.org/10.1080/15569543.2016.1198379

    Article  Google Scholar 

  19. M. Balseiro-Romero, C. Monterroso, and J. J. Casares, “Environmental fate of petroleum hydrocarbons in soil: review of multiphase transport, mass transfer, and natural attenuation processes,” Pedosphere 28, 833–847 (2018). https://doi.org/10.1016/S1002-0160(18)60046-3

    Article  Google Scholar 

  20. A. J. Barker, T. A. Douglas, A. D. Jacobson, J. W. McClelland, A. G. Ilgen, M. S. Khosh, G. O. Lehn, and T. P. Trainor, “Late season mobilization of trace metals in two small Alaskan arctic watersheds as a proxy for landscape scale permafrost active layer dynamics,” Chem. Geol. 381, 180–193 (2014) https://doi.org/10.1016/j.chemgeo.2014.05.012

    Article  Google Scholar 

  21. X. Fu, T. Li, L. Ji, L. Wang, L. Zheng, J. Wang, and Q. Zhang, “Occurrence, sources and health risk of polycyclic aromatic hydrocarbons in soils around oil wells in the border regions between oil fields and suburbs,” Ecotoxicol. Environ. Saf. 157, 276–284 (2018). https://doi.org/10.1016/j.ecoenv.2018.03.054

    Article  Google Scholar 

  22. C. Gao, “Experiences of microbial enhanced oil recovery in Chinese oil fields,” J. Pet. Sci. Eng. 166, 55–62 (2018). https://doi.org/10.1016/j.petrol.2018.03.037

    Article  Google Scholar 

  23. B. F. Hu, X. L. Jia, J. Hu, D. Y. Xu, F. Xia, and Y. Li, “Assessment of heavy metal pollution and health risks in the soil-plant-human system in the Yangtze River Delta, China,” Int. J. Environ. Res. Public Health 14, 1042 (2017). https://doi.org/10.3390/ijerph14091042

    Article  Google Scholar 

  24. J. M. Hunt, Petroleum Geochemistry and Geology, 2nd ed. (W.H. Freeman, New York, 1995).

    Google Scholar 

  25. O. Idowu, K. T. Semple, K. Ramadass, W. O' Connor, P. Hansbro, and P. Thavamani, “Beyond the obvious: environmental health implications of polar polycyclic aromatic hydrocarbons,” Environ. Int. 123, 543–557 (2019). https://doi.org/10.1016/j.envint.2018.12.051

    Article  Google Scholar 

  26. X. Ji, E. Abakumov, V. Polyako, X. Xie, and W. Dongyang, “The ecological impact of mineral exploitation in the Russian Arctic: a field-scale study of polycyclic aromatic hydrocarbons (PAHs) in permafrost-affected soils and lichens of the Yamal-Nenets autonomous region,” Environ. Pollut. 255, 113239 (2019). https://doi.org/10.1016/j.envpol.2019.113239

    Article  Google Scholar 

  27. JRC Technical Notes, 2011. Polycyclic Aromatic Hydrocarbons (PAHs) Factsheet, 4th ed. (Donata Lerda, European Union, 2011). https://ec.europa.eu/jrc/sites/ default/files/Factsheet%20PAH_0.pdf. Cited January 4, 2022.

  28. I. G. Kavouras, P. Koutrakis, M. Tsapakis, E. Lagoudaki, E. G. Stephanou, D. Von Baer, and P. Oyola, “Source apportionment of urban particulate aliphatic and polynuclear aromatic hydrocarbons (PAHs) using multivariate methods,” Environ. Sci. Technol. 35, 2288–2294 (2001).

    Article  Google Scholar 

  29. I. V. Krickov, O. S. Pokrovsky, R. M. Manasypov, A. G. Lim, L. S. Shirokova, and J. Viers, “Colloidal transport of carbon and metals by western Siberian rivers during different seasons across a permafrost gradient,” Geochim. Cosmochim. Acta. 265, 221–241 (2019). doi.org/https://doi.org/10.1016/j.gca.2019.08.041

    Article  Google Scholar 

  30. R. K. Larsen and J. E. Baker, “Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere: a comparison of three methods,” Environ. Sci. Technol. 137, 1873–1881 (2003).

    Article  Google Scholar 

  31. A. T. Lawal, “Polycyclic aromatic hydrocarbons. a review,” Cogent Environ. Sci. 3 (1), 1339841 (2017). https://doi.org/10.1080/23311843.2017.1339841

    Article  Google Scholar 

  32. Y. R. Liu, H. M. Yu, Y. Sun, and J. Chen, “Novel assessment method of heavy metal pollution in surface water: a case study of Yangping River in Lingbao City, China,” Environ. Eng. Res. 22 (1), 31–39 (2017). https://doi.org/10.4491/eer.2016.015

    Article  Google Scholar 

  33. E. R. Long, D. D. Macdonald, S. L. Smith, and F. D. Calder, “Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments,” Environ. Manage. 19, 81–97 (1995).

    Article  Google Scholar 

  34. D. D. MacDonald, R. S. Carr, F. D. Calder, E. R. Long, and C. G. Ingersoll, “Development and evaluation of sediment quality guidelines for Florida coastal waters,” Ecotoxicology 5, 253–278 (1996).

    Article  Google Scholar 

  35. B. Maliszewska-Kordybach, “Polycyclic aromatic hydrocarbons in agricultural soils in Poland: preliminary proposals for criteria to evaluate the level of soil contamination,” Appl. Geochem. 11, 121–127 (1996).

    Article  Google Scholar 

  36. K. McCarthy, L. Walker, and L. Vigoren, “Subsurface fate of spilled petroleum hydrocarbons in continuous permafrost,” Cold Reg. Sci. Technol. 38, 43–54 (2004).

    Article  Google Scholar 

  37. O. O. Olayinka, A. A. Adewusi, O. O. Olarenwaju, and A. A. Aladesida, “Concentration of polycyclic aromatic hydrocarbons and estimated human health risk of water samples around Atlas Cove, Lagos, Nigeria,” J. Health Pollut. 8, 181210 (2018). https://doi.org/10.5696/2156-9614-8.20.181210

    Article  Google Scholar 

  38. A. Opekunov, M. Opekunova, S. Kukushkin, and S. Lisenkov, “Impact of drilling waste pollution on land cover in a high subarctic forest-tundra zone,” Pedosphere 32 (3), 414–425 (2022). https://doi.org/10.1016/S1002-0160(21)60083-8

    Article  Google Scholar 

  39. A. Pejman, B. Gholamrez Nabi, M. Saeedi, and A. Baghvanda, “A new index for assessing heavy metals contamination in sediments: a case study,” Ecol. Indic. 58, 365–373 (2015). https://doi.org/10.1016/j.ecolind.2015.06.012

    Article  Google Scholar 

  40. J. Peng, Y. Chen, Q. Xia, G. Rong, and J. Zhang, “Ecological risk and early warning of soil compound pollutants (HMs, PAHs, PCBs and OCPs) in an industrial city, Changchun, China,” Environ. Pollut. 272, 116038 (2021). https://doi.org/10.1016/j.envpol.2020.116038

    Article  Google Scholar 

  41. O. S. Pokrovsky, J. Karlsson, and R. Giesler R, “Freeze-thaw cycles of Arctic thaw ponds remove colloidal metals and generate low-molecular-weight organic matter,” Biogeochemistry 137, 321–336 (2018). https://doi.org/10.1007/s10533-018-0421-6

    Article  Google Scholar 

  42. Y. W. Qiu, G. Zhang, G. Q. Liu, L. L. Guo, X. D. Li, and O. Wai, “Polycyclic aromatic hydrocarbons (PAHs) in the water column and sediment core of Deep Bay, South China,” Estuarine, Coastal Shelf Sci. 83, 60–66 (2009). https://doi.org/10.1016/j.ecss.2009.03.018

    Article  Google Scholar 

  43. T. V. Raudina, S. V. Loiko, A. Lim, R. M. Manasypov, G. I. Istigechev, D. M. Kuzmina, S. P. Kulizhsky, S. N. Vorobyev, L. S. Shirokova, and O. S. Pokrovsky, “Permafrost thaw and climate warming may decrease the CO2, carbon, and metal concentration in peat soil waters of the Western Siberia lowland,” Sci. Total Environ. 634, 1004–1023 (2018). https://doi.org/10.1016/j.scitotenv.2018.04.059

    Article  Google Scholar 

  44. K. Ravindra, A. K. Mittal, and R. Van Grieken, “Health risk assessment of urban suspended particulate matter with special reference to polycyclic aromatic hydrocarbons: a review,” Rev. Environ. Health. 16, 169–189 (2001).

    Article  Google Scholar 

  45. D. T. Rhea, R. W. Gale, C. E. Orazio, P. H. Peterman, D. D. Harper, and A. M. Farag, Polycyclic Aromatic Hydrocarbons in Water, Sediment, and Snow, from Lakes in Grand Teton National Park, Wyoming (United States Geological Survey, Reston, 2005).

  46. Statistical Review of World Energy. BP. 2021. https:// www.bp.com/content/dam/bp/business-sites/en/global/ corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2021-full-report.pdf. Cited June 17, 2021.

  47. S. N. Sushkova, T. M. Minkina, S. S. Mandzhieva, O. V. Bolotova, and T. V. Varduni, “New alternative method of benzo[a]pyrene extraction from soils and its approbation in soil under technogenic pressure,” J. Soils Sediments 16, 1323–1329 (2016). https://doi.org/10.1007/s11368-015-1104-8

    Article  Google Scholar 

  48. R. C. Swartz, “Consensus sediment quality guidelines for polycyclic aromatic hydrocarbon mixtures,” Environ. Toxicol. Chem. 18, 780–787 (1999).

    Article  Google Scholar 

  49. M. Tobiszewski and J. Namiesnik, “PAH diagnostic ratios for the identification of pollution emission sources,” Environ. Pollut. 162, 110–119 (2012). https://doi.org/10.1016/j.envpol.2011.10.025

    Article  Google Scholar 

  50. USEPA. Provisional Guidance for Quantitative Risk Assessment of PAH (US Environmental Protection Agency, EPA/600/R-93/089, 1993).

  51. J. D. Walker, L. Petrakis, and R. R. Colwell, “Comparison of the biodegradability of crude and fuel oils,” Can. J. Microbiol. 22, 598–602 (1976).

    Article  Google Scholar 

  52. C. Wang, S. Wu, S. Zhou, H. Wang, B. Li, H. Chen, Y. Yu, and Y. Shi, “Polycyclic aromatic hydrocarbons in soils from urban to rural areas in Nanjing: concentration, source, spatial distribution, and potential human health risk,” Sci. Total Environ. 527, 375–383 (2015). https://doi.org/10.1016/j.scitotenv.2015.05.025

    Article  Google Scholar 

  53. M. Wyszkowski and A. Ziółkowska, “Content of polycyclic aromatic hydrocarbons in soils polluted with petrol and diesel oil after remediation with plants and various substances,” Plant Soil Environ. 59, 287–294 (2013). https://doi.org/10.17221/21/2013-PSE

    Article  Google Scholar 

  54. Z. Xu, C. Wang, H. Li, S. Xu, J. Du, Y. Chen, C. Ma, and J. Tang, “Concentration, distribution, source apportionment, and risk assessment of surrounding soil PAHs in industrial and rural areas: a comparative study,” Ecol. Indic. 125, 107513 (2021). https://doi.org/10.1016/j.ecolind.2021.107513

    Article  Google Scholar 

  55. M. B. Yunker, R. W. Macdonald, R. Vingarzan, R. Mitchell, D. Goyette, and S. Selvestre, “PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition,” Org. Geochem. 33, 489–515 (2002).

    Article  Google Scholar 

  56. S. Zhang, W. Zhang, K. Wang, Y. Shen, L. Hu, and X. Wang, “Concentration, distribution and source apportionment of atmospheric polycyclic aromatic hydrocarbons in the southeast suburb of Beijing, China,” Environ. Monit. Assess. 151, 197–207 (2009). https://doi.org/10.1007/s10661-008-0261-2

    Article  Google Scholar 

  57. W. Zhang, Y. Liu, X. Tan, G. Zeng, J. Gong, C. Lai, Q. Niu, and Y. Tang, “Enhancement of detoxification of petroleum hydrocarbons and heavy metals in oil-contaminated soil by using glycine-b-cyclodextrin,” Int. J. Environ. Res. Public Health 16, 1155 (2019). https://doi.org/10.3390/ijerph16071155

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research, project no. 19-29-05081 Soils of Oil- and Gas-Bearing Areas of the North of Western Siberia: Resistance to Chemical Pollution and the Ability to Self-Purification under Changing Climate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Opekunova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Bel’chenko

Supplementary Information

Fig. S1 . Background (5-1) and disturbed (5-2) profiles along the winter road.

Fig. S2 . Changes in indicator ratios of the content of PAHs in soils.

Fig. S3 . Dendrogram of the hierarchical cluster analysis of Σ16PAH and HCs in organic (A) and illuvial horizons (B) of soils.

Fig. S4 . Distribution of the Nemerov index on test plots of profiles at sludge spills and along the winter road.

Fig. S5 . Regression relationship between the contamination danger index (CDI) and the toxicity equivalent (TEQ).

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Opekunova, M.G., Opekunov, A.Y., Kukushkin, S.Y. et al. Soil Pollution with Polycyclic Aromatic Hydrocarbons and Petroleum Hydrocarbons in the North of Western Siberia: Spatial Pattern and Ecological Risk Assessment. Eurasian Soil Sc. 55, 1647–1664 (2022). https://doi.org/10.1134/S1064229322110102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229322110102

Keywords:

Navigation