Skip to main content

Source Characterization of Polycyclic Aromatic Hydrocarbons by Using Their Molecular Indices: An Overview of Possibilities

  • Chapter
  • First Online:
Reviews of Environmental Contamination and Toxicology

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 234))

Abstract

The Polycyclic Aromatic Hydrocarbons (PAHs or polyaromatic hydrocarbons) have been extensively studied to understand their distribution, fate and effects in the environment (Haftka 2009; Laane et al. 1999, 2006, 2013; Okuda et al. 2002; Page et al. 1999; Pavlova and Ivanova 2003; Stout et al. 2001a; Zhang et al. 2005). They are organic compounds consisting of conjoined aromatic rings without heteroatoms (Schwarzenbach et al. 2003). Sander and Wise (1997) list 660 parent PAH compounds (i.e., aromatic substances without alkyl groups and consisting solely of fused rings connected to each other), ranging from the monocyclic molecule of benzene (molecular weight = 78) up to nine-ringed structures (MW up to 478). PAHs containing one or more alkyl groups are called alkyl PAHs. Our study deals with the parent compounds (without alkyl groups and/or heteroatoms), the alkyl PAHs (denoted as PAHn, with n referring to the number of methyl groups; see footnotes in Table 1), and certain heterocyclic sulfur PAHs (dibenzothiophenes). The term PAHs includes all the above, unless explicitly specified. In Table 1, we present the nomenclature of PAHs used in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    MW: molecular weight.

  2. 2.

    Mass Spectrometry.

  3. 3.

    For guidelines on how to perform a fingerprinting analysis of PAH sources (assessment of historic records, sampling considerations, climatic conditions, background pollution, quality assurance, etc.) see Christensen and Tomasi (2007), Christensen et al. (2004), Saber et al. (2006), Stout et al. (2001b, 2003), Wang et al. (1999a).

  4. 4.

    A two component mixing model to estimate the “a” % contribution of the source A to the sample, where the ratio of the two isomers is “rs”, given the ratios of the isomer components in the sources A and B (rA and rB respectively), and only sources A and B contribute, would look like: \( \mathrm{a}=\frac{\left({r}_A+1\right)\left({r}_B-{r}_s\right)}{\left({r}_s+1\right)\left({r}_B-{r}_A\right)}. \)

  5. 5.

    Using 1st order kinetics, the ratio r after of two isomers (S and U) after photodegradation in air for time t would be: \( {R}_{after}={R}_{emission}{e}^{\left({k}_U-{k}_S\right)t} \), where k is the photodegradation constant of the respective analytes for a certain particle color.

  6. 6.

    The BaA/228 (i.e., the denominator is the sum of PAHs that have MW = 228) is sometimes used instead of BaA/C0, because of the coelution of triphenylene (TPh) and chrysene (e.g., Gogou et al. 2000). In this paper no discrimination is made between the two ratios.

References

  • Abrajano TA, Yan B, O’Malley V (2003) High molecular weight petrogenic and pyrogenic hydrocarbons in aquatic environments. In: Sherwood B (ed) Treatise on geochemistry, vol 9. Elsevier Ltd, Oxford, pp 475–509

    Google Scholar 

  • Achten C, Hofmann T (2009) Native polycyclic aromatic hydrocarbons (PAH) in coals – a hardly recognized source of environmental contamination. Sci Total Environ 407:2461–2473

    CAS  Google Scholar 

  • Agarwal T (2009) Concentration level, pattern and toxic potential of PAHs in traffic soil of Delhi, India. J Hazard Mater 171:894–900

    CAS  Google Scholar 

  • Ahrens MJ, Depree CV (2010) A source mixing model to apportion PAHs from coal tar and asphalt binders in street pavements and urban aquatic sediments. Chemosphere 81:1526–1535

    CAS  Google Scholar 

  • Alam MS, Delgado-Saborit JM, Stark C, Harrison RM (2013) Using atmospheric measurements of PAH and quinone compounds at roadside and urban background sites to assess sources and reactivity. Atmos Environ 77:24–35

    CAS  Google Scholar 

  • Allan LM (1999) Thia-arenes as pollution source tracers in urban air particulate. PhD Thesis, McMaster University, Hamilton, ON, pp 43–74, 178–221

    Google Scholar 

  • Alves CA, Vicente A, Evtyugina M, Pio CA, Hoffer A, Kiss G, Decesari S, Hillamo R, Swietlicki E (2009) Characterisation of hydrocarbons in atmospheric aerosols from different European sites. World Acad Sci Eng Tech 33:236–242

    Google Scholar 

  • Andersson M, Klug M, Eggen OA, Ottesen RT (2014) Polycyclic aromatic hydrocarbons (PAHs) in sediments from lake Lille Lungegårdsvannet in Bergen, western Norway; appraising pollution sources from the urban history. Sci Tot Environ 470–471:1160–1172

    Google Scholar 

  • Bakhtiari AR, Zakaria MP, Yaziz MI, Hj Lajis MN, Bi X, Abd Rahim MC (2009) Vertical distribution and source identification of polycyclic aromatic hydrocarbons in anoxic sediment cores of Chini Lake, Malaysia: perylene as indicator of land plant-derived hydrocarbons. Appl Geochem 24:1777–1787

    CAS  Google Scholar 

  • Barakat AO, Qian Y, Kim M, Kennicutt M II (2001) Source and weathering dependent changes in PAH molecular ratios during naturally weathering of oil residues over a period of 15 years in the Egyptian Western Desert. ACS Div Environ Chem Prepr 41:38–43

    CAS  Google Scholar 

  • Barra R, Castillo C, Torres JPM (2007) Polycyclic aromatic hydrocarbons in the South American environment. Rev Environ Contam Toxicol 191:1–22

    CAS  Google Scholar 

  • Battelle Memorial Institute, Earth Tech Inc, Newfields Inc (2003) Guidance for environmental background analysis Volume II: Sediment. NFESC User’s Guide UG-2054-ENV DC 20374-5065. Naval Facilities Engineering Command, Washington, DC, pp 153–180

    Google Scholar 

  • Behymer TD, Hites RA (1988) Photolysis of polycyclic aromatic hydrocarbons adsorbed on fly ash. Environ Sci Technol 22:1311–1319

    CAS  Google Scholar 

  • Bence AE, Kvenvolden KA, Kennicutt MC II (1996) Organic geochemistry applied to environmental assessments of Prince William Sound, Alaska, after the Exxon Valdez oil spill – a review. Org Geochem 24:7–42

    CAS  Google Scholar 

  • Bence AE, Page DS, Boehm PD (2007) Advances in forensic techniques for petroleum hydrocarbons: the Exxon Valdez experience. In: Wang Z, Stout SA (eds) Oil spill environmental forensics. Fingerprinting and source identification. Elsevier, Boston, MA, pp 449–488

    Google Scholar 

  • Benner BA, Wise SA, Currie LA, Klouda GA, Klinedinst DB (1995) Distinguishing the contributions of residential wood combustion and mobile source emissions using relative concentrations of dimethylphenanthrene isomers. Environ Sci Technol 29:2382–2389

    CAS  Google Scholar 

  • Bertilsson S, Widenfalk A (2002) Photochemical degradation of PAHs in freshwaters and their impact on bacterial growth – influence of water chemistry. Hydrobiologia 469:23–32

    CAS  Google Scholar 

  • Boehm P, Saba T (2008) Identification and allocation of polycyclic aromatic hydrocarbons (PAHs). Exponent Environ Forens Notes 4:1–5

    Google Scholar 

  • Boehm PD, Douglas GS, Brown JS (1995) Advanced chemical fingerprinting for oil spill identification and natural resource damage assessment. In: Proceedings of the 1995 International Oil Spill Conference. American Petroleum Institute, Washington, DC, pp 967–969

    Google Scholar 

  • Boehm PD, Page DS, Burns WA, Bence AE, Mankiewiez PJ, Brown JS (2001) Resolving the origin of the petrogenic hydrocarbon background in Prince William Sound, Alaska. Environ Toxicol Chem 35:471–479

    CAS  Google Scholar 

  • Boehm PD, Burns WA, Page DS, Bence AE, Mankiewicz PJ, Brown JS, Douglas GS (2002) Total organic carbon, an important tool in an holistic approach to hydrocarbon source fingerprinting. Environ Forens 3:243–250

    CAS  Google Scholar 

  • Boehm PD, Neff JM, Page DS (2007) Assessment of polycyclic aromatic hydrocarbon exposure in the waters of Prince William Sound after Exxon Valdez oil spill: 1989–2005. Mar Pollut Bull 54:339–367

    CAS  Google Scholar 

  • Boehm PD, Page DS, Brown JS, Neff JM, Bragg JR, Atlas RM (2008) Distribution and weathering of crude oil residues on shorelines 18 years after the Exxon Valdez spill. Environ Sci Technol 42:9210–9216

    CAS  Google Scholar 

  • Bogdal C, Bucheli TD, Agarwal T, Anselmetti FS, Blum F, HungerBuhler K, Kohler M, Schmid P, Scheringer M, Sobek A (2011) Contrasting temporal trends and relationships of total organic carbon, black carbon, and polycyclic aromatic hydrocarbons in rural low-altitude and remote high-altitude lakes. J Environ Monit 13:1316–1325

    CAS  Google Scholar 

  • Boitsov S, Jensen HKB, Klungsoyr J (2009) Natural background and anthropogenic inputs of polycyclic aromatic hydrocarbons (PAH) in sediments of South-Western Barents Sea. Mar Environ Res 68:236–245

    CAS  Google Scholar 

  • Boll ES, Christensen JH, Holm PE (2008) Quantification and source identification of polycyclic aromatic hydrocarbons in sediment, soil, and water spinach from Hanoi, Vietnam. J Environ Monit 10:261–269

    CAS  Google Scholar 

  • Boonyatumanond R, Murakami M, Wattayakorn G, Togo A, Takada H (2007) Sources of polycyclic aromatic hydrocarbons (PAHs) in street dust in a tropical Asian mega-city, Bangkok, Thailand. Sci Total Environ 384:420–432

    CAS  Google Scholar 

  • Breault RF, Smith KP, Sorenson JR (2005) Residential street-dirt accumulation rates and chemical composition, and removal efficiencies by mechanical- and vacuum-type sweepers, New Bedford, Massachusetts, 2003–04. Scientific Investigations Report 2005-5184. Department of the Interior, U.S. Geological Survey, Reston, VA, pp 1–27

    Google Scholar 

  • Brenner RC, Magar VS, Ickes JA, Abbott JE, Stout SA, Crecelius EA, Bingler LS (2002) Characterization and fate of PAH-contaminated sediments at the Wyckoff/Eagle Harbor Superfund site. Environ Sci Technol 36:2605–2613

    CAS  Google Scholar 

  • Bucheli TD, Blum F, Desaules A, Gustafsson O (2004) Polycyclic aromatic hydrocarbons, black carbon, and molecular markers in soils of Switzerland. Chemosphere 56:1061–1076

    CAS  Google Scholar 

  • Budzinski H, Jones I, Bellocq J, Pierard C, Garrigues P (1997) Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary. Mar Chem 58:85–97

    CAS  Google Scholar 

  • Burns WA, Mankiewicz PJ, Bence AE, Page DS, Parker KR (1997) A principal-component and least-squares method for allocating polycyclic aromatic hydrocarbons in sediment to multiple sources. Environ Toxicol Chem 16:1119–1131

    CAS  Google Scholar 

  • Bylina BG, Rakwic B, Pastuszka JS (2005) Assessment of exposure to traffic-related aerosol and to particle-associated PAHs in Gliwice, Poland. Pol J Environ Stud 14:117–123

    CAS  Google Scholar 

  • Cailleaud K, Forget-Leray J, Souissi S, Hilde D, LeMenach K, Budzinski H (2007) Seasonal variations of hydrophobic organic contaminant concentrations in the water-column of the Seine Estuary and their transfer to a planktonic species Eurytemora Affinis (Calanoıda, copepoda). Part 1: PCBs and PAHs. Chemosphere 70:270–280

    CAS  Google Scholar 

  • Calvacante RM, Sousa FW, Nascimento RF, Silveira ER, Freire GSS (2009) The impact of urbanization on tropical mangroves (Fortaleza, Brazil): evidence from PAH distribution in sediments. J Environ Manage 91:28–335

    Google Scholar 

  • Chen CW, Chen CF (2011) Distribution, origin, and potential toxicological significance of polycyclic aromatic hydrocarbons (PAHs) in sediments of Kaohsiung Harbor, Taiwan. Mar Pollut Bull 63:417–423

    CAS  Google Scholar 

  • Chen SJ, Su HB, Chang JE, Lee WJ, Huang KL, Hsieh LT, Huang YC, Lin WY, Lin CC (2006) Emissions of polycyclic aromatic hydrocarbons (PAHs) from the pyrolysis of scrap tires. Atmos Environ 41:1209–1220

    Google Scholar 

  • Chen Y, Sheng G, Bi X, Feng Y, Mai B, Fu J (2005) Emission factors for carbonaceous particles and polycyclic aromatic hydrocarbons from residential coal combustion in China. Environ Sci Technol 39:1861–1867

    CAS  Google Scholar 

  • Chien SM, Huang YJ (2010) Sizes and polycyclic aromatic hydrocarbon composition distributions of nano, ultrafine, fine, and coarse particulates emitted from a four-stroke motorcycle. J Environ Sci Health A 45:1768–1774

    CAS  Google Scholar 

  • Christensen JH, Tomasi G (2007) Practical aspects of chemometrics for oil spill fingerprinting. J Chromatogr A 1169:1–22

    CAS  Google Scholar 

  • Christensen JH, Hansen AB, Tomasi G, Mortensen J, Andersen O (2004) Integrated methodology for forensic oil spill identification. Environ Sci Technol 38:2912–2918

    CAS  Google Scholar 

  • Colombo JC, Pelletie E, Brochu C, Khall M (1989) Determination of hydrocarbon sources using n-alkane and polyaromatic hydrocarbon distribution indexes. Case study: Rio de La Plata Estuary, Argentina. Environ Sci Technol 7:888–894

    Google Scholar 

  • Comero S, Capitani L, Gawlik BM (2009) Positive Matrix Factorisation (PMF). An introduction to the chemometric evaluation of environmental monitoring data using PMF. JRC Scientific and Technical reports EUR 23946 EN–2009. European Commission Joint Research Centre, Institute for Environment and Sustainability, Ispra, Italy, pp 1–59

    Google Scholar 

  • Compaan H, Laane RWPM (1992) Polycyclic aromatic hydrocarbons in the North Sea, an inventory. TNO-report IMW-R 92/392, 130p

    Google Scholar 

  • Costa HJ, White KA, Ruspantini JJ (2004) Distinguishing PAH background and MGP residues in sediments of a freshwater creek. Environ Forens 5:171–182

    CAS  Google Scholar 

  • Costa HJ, Sauer JTC (2005) Forensic approaches and considerations in identifying PAH background. Environ Forens 6:9–16

    CAS  Google Scholar 

  • Craig DR, Mauro DM (2012) Benzofluorene/methylpyrene ratios as a source identification tool. In: Liptai LL, Micheals A (eds) Forensic engineering sciences, Proceedings 2002-2011. American Academy of Forensic Sciences, Colorado Springs, CO, pp 215–245

    Google Scholar 

  • Dahlmann G (2003) Characteristic features of different oil types in oil spill identification. BSH 31/2003, Berichte des Bundesamtes fur Seeschifffahrt und Hydrographie, Germany, pp 1–48

    Google Scholar 

  • Daisey JM, Cheney JL, Lioy PJ (1986) Profiles of organic particulate emissions from air pollution sources–status and needs for receptors source apportionment modeling. J Air Pollut Control Assoc 36:17–33

    CAS  Google Scholar 

  • Da Silva DAM, Bicego MC (2010) Polycyclic aromatic hydrocarbons and petroleum biomarkers in Sao Sebastiao Channel, Brazil: assessment of petroleum contamination. Mar Environ Res 69:277–286

    Google Scholar 

  • Davis JC (2002) Analysis of multivariate data. John Wiley and Sons, New York, NY, pp 461–600

    Google Scholar 

  • Dean JA (ed) (1999) Lange’s handbook of chemistry, 15th edn. McGraw-Hill, New York, NY

    Google Scholar 

  • De Fatima M, Meniconi G, Barbanti SM (2007) Case study: evaluation of hydrocarbon sources in Guanabara Bay, Brazil. In: Wang Z, Stout SA (eds) Oil spill environmental forensics. Fingerprinting and source identification. Elsevier, Boston, MA, pp 505–536

    Google Scholar 

  • De Luca G, Furesi A, Leardi R, Micera G, Panzanelli A, Piu PC (2004) Polycyclic aromatic hydrocarbons assessment in the sediments of the Porto Torres Harbor (Northern Sardinia, Italy). Mar Chem 86:15–32

    Google Scholar 

  • De Luca G, Furesi A, Micera G, Panzanelli A, Piu PC, Pilo MI, Spano N, Sanna G (2005) Nature, distribution and origin of polycyclic aromatic hydrocarbons (PAHs) in the sediments of Olbia harbor (Northern Sardinia, Italy). Mar Pollut Bull 50:1223–1232

    Google Scholar 

  • Denton E (2006) Characterization of used oil in stormwater runoff in California. Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, p 3. Available from: http://oehha.ca.gov/water/reports/OilInRunoff0906.pdf. Accessed on 30 October 2012

  • Dickhut RM, Canuel EA, Gustafson KE, Liu K, Arzayus KM, Walker SE, Edgecombe G, Gaylor MO, Macdonald EH (2000) Automotive sources of carcinogenic polycyclic aromatic hydrocarbons associated with particulate matter in the Chesapeake Bay region. Environ Sci Technol 34:4635–4640

    CAS  Google Scholar 

  • Diez S, Jover E, Bayona JM, Albaiges J (2007) Prestige oil spill. III. Fate of a heavy oil in the marine environment. Environ Sci Technol 41:3075–3082

    CAS  Google Scholar 

  • Dobbins RA, Fletcher RA, Benner JBA, Hoeft S (2006) Polycyclic aromatic hydrocarbons in flames, in diesel fuels, and in diesel emissions. Comb Flame 144:773–781

    CAS  Google Scholar 

  • Douglas GS, Bence AE, Prince RC, McMillen SJ, Butler EL (1996) Environmental stability of selected petroleum hydrocarbon source and weathering ratios. Environ Sci Technol 30:2332–2339

    CAS  Google Scholar 

  • Douglas GS, Emsbo-Mattingly SD, Stout SA, Uhler AD, McCarthy KJ (2007a) Chemical fingerprinting methods. In: Murphy BL, Morisson RD (eds) Introduction to environmental forensics, 2nd edn. Academic, New York, NY, pp 311–454

    Google Scholar 

  • Douglas GS, Stout SA, Uhler AD, McCarthy KJ, Emsbo-Mattingly SD (2007b) Advantages of quantitative chemical fingerprinting in oil spill source identification. In: Wang Z, Stout SA (eds) Oil spill environmental forensics. Fingerprinting and source identification. Elsevier, Boston, MA, pp 257–292

    Google Scholar 

  • Dupree C, Ahrens A (2007) Polycyclic aromatic hydrocarbons in Auckland’s aquatic environment: sources, concentrations and potential environmental risks. Technical Publication No. TP378, Auckland Regional Council, New Zealand, pp 1–71

    Google Scholar 

  • Dvorska A, Lammel G, Klanova J (2011) Use of diagnostic ratios for studying source apportionment and reactivity of ambient polycyclic aromatic hydrocarbons over Central Europe. Atmos Environ 45:420–427

    CAS  Google Scholar 

  • Dzepina K, Arey J, Marr LC, Worsnop DR, Salcebo D, Zhang Q, Onasch TB, Molina LT, Molina MJ, Jimenez JL (2007) Detection of particle-phase polycyclic aromatic hydrocarbons in Mexico City using an aerosol mass spectrometer. Int J Mass Spectrom 263:152–170

    CAS  Google Scholar 

  • Dzou LIP, Noble RA, Senftle JT (1995) Maturation effects on absolute biomarker concentration in a suite of coals and associated vitrinite concentrates. Org Geochem 23:681–697

    CAS  Google Scholar 

  • Elmquist M, Zencak Z, Gustafsson O (2007) A 700 year sediment record of black carbon and Polycyclic Aromatic Hydrocarbons near the EMEP Air Monitoring Station in Aspvreten, Sweden. Environ Sci Technol 41:6926–6932

    CAS  Google Scholar 

  • European Commission (2001) Decision No 2455/2001/EC of the European parliament and of the council of 20 November 2001 establishing the list of priority substances in the field of water policy and amending Directive 2000/60/EC. Official Journal of the European Communities, L331/1. European Commission.

    Google Scholar 

  • Fabbri D, Vassura I, Sun CG, Snape CE, Mcrae C, Fallick AE (2003) Source apportionment of polycyclic aromatic hydrocarbons in a coastal lagoon by molecular and isotopic characterisation. Mar Chem 84:123–135

    CAS  Google Scholar 

  • Faksness LG, Daling PS, Hansen AB (2002) CEN/BT/TF 120 oil spill identification. Summary report: Round Robin test series B. SINTEF report STF66 A02038, SINTEF, Trondheim, Norway, pp 1–50

    Google Scholar 

  • Fan CW, Shiue J, Wu CY, Wu CY (2011) Perylene dominance in sediments from a subtropical high mountain lake. Org Geochem 42:116–119

    CAS  Google Scholar 

  • Farrington JW, Frew NM, Gschwend PM, Tripp BW (1977) Hydrocarbons in cores of Northwestern Atlantic coastal and continental margin sediments. Estuar Coast Mar Sci 5:793–808

    CAS  Google Scholar 

  • Galarneau E (2008) Source specificity and atmospheric processing of airborne PAHs: implications for source apportionment. Atmos Environ 42:8139–8149

    CAS  Google Scholar 

  • Geller MD, Ntziachristos L, Mamakos A, Samaras Z, Schmitz DA, Froines JR, Sioutas C (2006) Physicochemical and redox characteristics of particulate matter (PM) emitted from gasoline and diesel passenger cars. Atmos Environ 40:6988–7004

    CAS  Google Scholar 

  • Giger W, Blumer M (1974) Polycyclic aromatic hydrocarbons in the environment: isolation and characterization by chromatography, visible, ultraviolet, and mass spectrometry. Anal Chem 46:1663–1671

    CAS  Google Scholar 

  • Gogou A, Bouloubassi I, Stephanou EG (2000) Marine organic geochemistry of the Eastern Mediterranean: 1. Aliphatic and polyaromatic hydrocarbons in Cretan Sea surficial sediments. Mar Chem 68:265–282

    CAS  Google Scholar 

  • Grimalt JO, van Drooge BL, Ribes A, Fernandez P, Appleby P (2004) Polycyclic aromatic hydrocarbon composition in soils and sediments of high altitude lakes. Environ Pollut 131:13–24

    CAS  Google Scholar 

  • Grimmer G, Jacob J, Naujack KW (1981) Profile of the polycyclic aromatic hydrocarbons from lubricating oils inventory by GCGC/MS - PAH in environmental materials, Part 1. Fresenius Z Anal Chem 306:347–355

    CAS  Google Scholar 

  • Grimmer G, Jacob B, Naujack KW (1983) Profile of the polycyclic aromatic compounds from crude oils Part 3. inventory by GCGC/MS. - PAH in environmental materials. Fresenius Z Anal Chem 314:29–36

    CAS  Google Scholar 

  • Gschwend PM, Hites RA (1981) Fluxes of polycyclic aromatic hydrocarbons to marine and lacustrine sediments in the northeastern United States. Geochim Cosmochim Acta 45:2359–2367

    CAS  Google Scholar 

  • Guillon A, Le Menach K, Flaud PM, Marchand N, Budzinski H, Villenave E (2013) Chemical characterization and stable carbon isotopic composition of particulate Polycyclic Aromatic Hydrocarbons issued from combustion of 10 Mediterranean woods. Atm Chem Phys 13:2703–2719

    CAS  Google Scholar 

  • Guo Z, Lin T, Zhang G, Zheng M, Zhang Z, Hao Y, Fang M (2007) The sedimentary fluxes of polycyclic aromatic hydrocarbons in the Yangtze River Estuary coastal sea for the past century. Sci Total Environ 386:33–41

    CAS  Google Scholar 

  • Gustafsson O (1997) Physico-chemical speciation and ocean fluxes of polycyclic aromatic hydrocarbons. PhD Thesis, Massachusetts Institute of Technology, Woods Hole Oceanographic Institution, Cambridge, MA, p 189

    Google Scholar 

  • Haftka J (2009) Bioavailability of polycyclic aromatic hydrocarbons in sediments: experiments and modelling. PhD Thesis, Universiteit van Amsterdam, Amsterdam, Netherlands

    Google Scholar 

  • Hailwood M, King D, Leoz E, Maynard R, Menichini E, Moorcroft S, Pacyna J, Ballesta P, Schneider PJ, Westerholm R, Wichmann-Fiebig M, Woodfield M, van Bree L, Conolly C (2001) Ambient air pollution by polycyclic aromatic hydrocarbons (PAH). In: European Commission (ed) Position paper annexes, annex 2:3–43

    Google Scholar 

  • Hansen AB, Daling PS, Faksness LG, Sorheim KR, Kienhuis P, Duus R (2007) Emerging CEN methodology for oil spill identification. In: Wang Z, Stout SA (eds) Oil spill environmental forensics. Fingerprinting and source identification. Elsevier, Boston, MA, pp 229–256

    Google Scholar 

  • Harris KA, Yunker MB, Dangerfield N, Ross PS (2011) Sediment-associated aliphatic and aromatic hydrocarbons in coastal British Columbia, Canada: concentrations, composition, and associated risks to protected sea otters. Environ Pollut 159:2665–2674

    CAS  Google Scholar 

  • He J, Balasubramanian R (2010) Semi-volatile organic compounds (SVOCs) in ambient air and rainwater in a tropical environment: concentrations and temporal and seasonal trends. Chemosphere 78:742–751

    CAS  Google Scholar 

  • Hegazi AH, Andersson JT (2007) Characterization of polycyclic aromatic sulfur heterocycles for source identification. In: Wang Z, Stout SA (eds) Oil spill environmental forensics. Fingerprinting and source identification. Elsevier, Boston, MA, pp 147–168

    Google Scholar 

  • Hostettler FD, Wang Y, Huang Y, Cao W, Bekins BA, Rostad CE, Kulpa CF, Laursen A (2007) Forensic fingerprinting of oil-spill hydrocarbons in a methanogenic environment–Mandan, ND and Bemidji, MN. Environ Forens 8:139–153

    CAS  Google Scholar 

  • Hwang HM, Wade TL, Sericano JL (2003) Concentrations and source characterization of polycyclic aromatic hydrocarbons in pine needles from Korea, Mexico, and United States. Atmos Environ 37:2259–2267

    CAS  Google Scholar 

  • Iqbal J, Overton EB, Gisclair D (2008) Polycyclic aromatic hydrocarbons in Louisiana Rivers and coastal environments: source fingerprinting and forensic analysis. Environ Forens 9:63–74

    CAS  Google Scholar 

  • Irwin RJ, van Mouwerik M, Stevens L, Seese MD, Basham W (1997) Environmental contaminants encyclopedia. National Park Service, Water Resources Division, Fort Collins, CO

    Google Scholar 

  • Jeanneau L, Faure P, Montarges-Pelletier E (2008) Quantitative multimolecular marker approach to investigate the spatial variability of the transfer of pollution from the Fensch River to the Moselle River (France). Sci Total Environ 389:503–513

    CAS  Google Scholar 

  • Jensen A, Nielsen GG, Gundersen V, Nielsen OJ, Ostergard H, Aarkrog A (1993) Environmental science and technology department annual report 1992, Riso-R-680(EN). Riso National Laboratory, Roskilde, Denmark, pp 16–17

    Google Scholar 

  • Jiang JJ, Lee CL, Fang MD, Liu JT (2009) Polycyclic aromatic hydrocarbons in coastal sediments of southwest Taiwan: an appraisal of diagnostic ratios in source recognition. Mar Pollut Bull 58:752–760

    CAS  Google Scholar 

  • Jiao L, Zheng GJ, Minh TB, Richardson B, Chen L, Zhang Y, Yeung LW, Lam JCW, Yang X, Lam PKS, Wong MH (2009) Persistent toxic substances in remote lake and coastal sediments from Svalbard, Norwegian Arctic: levels, sources and fluxes. Environ Pollut 157:1342–1351

    CAS  Google Scholar 

  • Jimenez N, Vinas M, Sabate J, Diez S, Bayona JM, Solanas AM, Albaiges J (2006) The prestige oil spill. 2. Enhanced biodegradation of a heavy fuel oil under field conditions by the use of an oleophilic fertilizer. Environ Sci Technol 40:2578–2585

    CAS  Google Scholar 

  • Johnson GW, Ehrlich R, Full W, Ramos S (2007) Principal components analysis and receptor models in environmental forensics. In: Murphy BL, Morrison RD (eds) Introduction to environmental forensics, 2nd edn. Academic, New York, NY, pp 207–272

    Google Scholar 

  • Johnson-Restrepo BJ, Verbel JO, Lu S, Fernandez JG, Avila RB, Hoyos IO, Aldous KM, Addink R, Kannan K (2008) Polycyclic aromatic hydrocarbons and their hydroxylated metabolites in fish bile and sediments from coastal waters of Colombia. Environ Pollut 151:452–459

    CAS  Google Scholar 

  • Karlsson K, Viklander M (2008) Polycyclic aromatic hydrocarbons (PAH) in water and sediment from gully pots. Water Air Soil Pollut 188:271–282

    CAS  Google Scholar 

  • Kim D, Kumfer BM, Anastasio C, Kennedy IM, Young TM (2009) Environmental aging of polycyclic aromatic hydrocarbons on soot and its effect on source identification. Chemosphere 76:1075–1081

    CAS  Google Scholar 

  • Kim M, Kennicutt MC II, Yaorong Q (2008) Source characterization using compound composition and stable carbon isotope ratio of PAHs in sediments from lakes, harbor and shipping waterway. Sci Total Environ 389:367–377

    CAS  Google Scholar 

  • Klamer JC, Hegeman WJM, Smedes F (1990) Comparison of grain size correction procedures for organic micropollutants and heavy metals in marine sediments. Hydrobiologia 208:213–220

    CAS  Google Scholar 

  • Laane RWPM, Sonneveldt HLA, Van der Weyden AJ, Loch JPG, Groenveld G (1999) Trends in the spatial and temporal distribution of metals (Cd, Cu, Zn and Pb) and organic compounds (PCBs and PAHs) in Dutch coastal zone sediments from 1981 to 1996: a model case study for Cd and PCBs. J Sea Res 41:1–17

    CAS  Google Scholar 

  • Laane RWPM, De Voogt P, Bik MH (2006) Assessment of organic compounds in the Rhine estuary. Hdb Env Chem 5:307–368

    Google Scholar 

  • Laane RWPM, Vethaak AD, Gandrass J, Vorkamp K, Kohler A, Larsen MM, Strand J (2013) Chemical contaminants in the Wadden Sea: Sources, transport, fate and effects. J Sea Res 82:10–53

    Google Scholar 

  • Laflamme RE, Hites RA (1978) The global distribution of polycyclic aromatic hydrocarbons in recent sediments. Geochim Cosmochim Acta 42:289–303

    CAS  Google Scholar 

  • Lai IC, Lee CL, Zeng KY, Huang HC (2011) Seasonal variation of atmospheric polycyclic aromatic hydrocarbons along the Kaohsiung coast. J Environ Manage 92:2029–2037

    CAS  Google Scholar 

  • Lake JL, Norwood C, Dimock C, Bowen R (1979) Origins of polycyclic aromatic hydrocarbons in estuarine sediments. Geochim Cosmochim Acta 43:1847–1854

    CAS  Google Scholar 

  • Lang YH, Yang X, Wang H, Yang W, Li GL (2013) Diagnostic ratios and positive matrix factorization to identify potential sources of PAHs in sediments of the Rizhao Offshore, China. Polycycl Aromat Compd 33:161–172

    CAS  Google Scholar 

  • Larsen RK, Baker JE (2003) Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere: a comparison of three methods. Environ Sci Technol 37:1873–1881

    CAS  Google Scholar 

  • Lehndorff E, Schwark L (2004) Biomonitoring of air quality in the Cologne Conurbation using pine needles as a passive sampler–Part II: polycyclic aromatic hydrocarbons (PAH). Atmos Environ 38:3793–3808

    CAS  Google Scholar 

  • Lehndorff E, Schwark L (2009) Biomonitoring airborne parent and alkylated three-ring PAHs in the Greater Cologne Conurbation I: temporal accumulation patterns. Environ Pollut 157:1323–1331

    CAS  Google Scholar 

  • Lide DR (ed) (2004) Handbook of chemistry and physics, 84th edn. CRC Press LLC., Boca Raton, FL

    Google Scholar 

  • Lim MCH, Ayoko GA, Morawska L, Ristovski DZ, Jayaratne ER (2007) Influence of fuel composition on polycyclic aromatic hydrocarbon emissions from a fleet of in-service passenger cars. Atmos Environ 41:150–160

    CAS  Google Scholar 

  • Lorenzi D, Entwistle JA, Cave M, Dean JR (2011) Determination of polycyclic aromatic hydrocarbons in urban street dust: implications for human health. Chemosphere 83:970–977

    CAS  Google Scholar 

  • Luo XJ, Chen SJ, Mai BX, Sheng GY, Fu JM, Zeng EY (2008) Distribution, source apportionment, and transport of PAHs in sediments from the Pearl River delta and the northern South China Sea. Arch Environ Contam Toxicol 55:11–20

    CAS  Google Scholar 

  • Mackay D, Shiu WY, Ma K-C, Lee SC (eds) (2006) Handbook of physical-chemical properties and environmental fate for organic chemicals, 2nd edn. CRC Press, Boca Raton, FL

    Google Scholar 

  • Magi E, Bianco R, Di Carro M (2002) Distribution of polycyclic aromatic hydrocarbons in the sediments of the Adriatic Sea. Environ Pollut 119:91–98

    CAS  Google Scholar 

  • Mandalakis M, Gustafsson O, Reddy C, Xu L (2004) Radiocarbon apportionment of fossil versus biofuel combustion sources of polycyclic aromatic hydrocarbons in the Stockholm metropolitan area. Environ Sci Technol 38:5344–5349

    CAS  Google Scholar 

  • Mansuy-Huault L, Regier A, Faure P (2009) Analyzing hydrocarbons in sewer to help in PAH source apportionment in sewage sludges. Chemosphere 75:995–1002

    CAS  Google Scholar 

  • Marr L, Kirchstetter TW, Harley RA, Miguel AH, Sussane VH, Hammond KS (1999) Characterization of polycyclic aromatic hydrocarbons in motor vehicle fuels and exhaust emissions. Environ Sci Technol 33:3091–3099

    CAS  Google Scholar 

  • Marvin CH, McCarry BE, Villella J, Allan LM, Bryant W (2000) Chemical and biological pro®les of sediments as indicators of sources of genotoxic contamination in Hamilton Harbour. Part I: Analysis of polycyclic aromatic hydrocarbons and thia-arene compounds. Chemosphere 41:979–988

    CAS  Google Scholar 

  • Masclet P, Bresson MA, Mouvier G (1987) Polycyclic aromatic hydrocarbons emitted by power stations, and influence of combustion conditions. Fuel 66:556–562

    CAS  Google Scholar 

  • Masclet P, Mouvier G, Nikolaou K (1986) Relative decay index and sources of polycyclic aromatic hydrocarbons. Atmos Environ 20:439–446

    CAS  Google Scholar 

  • Mathieu C, Friese M (2012) PBT chemical trends in Washington state determined from age-dated lake sediment cores 2011 sampling results. Environmental Assessment Program, Publication No. 12-03-045. Washington State Department of Ecology, Olympia, Washington, DC, pp 1–53

    Google Scholar 

  • Mauro D (2008) PAHs in urban background: distribution, regulatory relief, and forensic value. In: MGP 2008 Proceedings. The Third International Symposium and Exhibition on the Redevelopment of manufactured gas plant sites. Mystic, CT, USA

    Google Scholar 

  • Micic V, Kruge MA, Koster J, Hofmann T (2011) Natural, anthropogenic and fossil organic matter in river sediments and suspended particulate matter: A multi-molecular marker approach. Sci Total Environ 409:905–919

    CAS  Google Scholar 

  • Miguel AH, Kirchstetter TW, Harley RA (1998) On-road emissions of particulate polycyclic aromatic hydrocarbons and black carbon from gasoline and diesel vehicles. Environ Sci Technol 32:450–455

    CAS  Google Scholar 

  • Mitra S, Dellapenna TM, Dickhut RM (1999) Polycyclic aromatic hydrocarbon distribution within Lower Hudson River estuarine sediments: physical mixing vs sediment geochemistry. Estuar Coast Shelf Sci 49:311–326

    CAS  Google Scholar 

  • Mitra S, Lalicata JJ, Allison MA, Dellapenna TM (2009) The effects of hurricanes Katrina and Rita on seabed polycyclic aromatic hydrocarbon dynamics in the Gulf of Mexico. Mar Pollut Bull 58:851–857

    CAS  Google Scholar 

  • Morillo E, Romero AS, Madrid L, Villaverde J, Maqueda C (2008a) Characterization and sources of PAHs and potentially toxic metals in urban environments of Sevilla (Southern Spain). Water Air Soil Pollut 187:41–51

    CAS  Google Scholar 

  • Morillo E, Romero AS, Maqueda C, Madrid L, Ajmone-Marsan F, Grcman H, Davidson CM, Hursthouse AS, Villaverde J (2008b) Soil pollution by PAHs in urban soils: a comparison of three European cities. J Environ Monit 9:1001–1008

    Google Scholar 

  • Mostafa AR, Hegazi AH, El-Gayar MS, Andersson JT (2009) Source characterization and the environmental impact of urban street dusts from Egypt based on hydrocarbon distributions. Fuel 88:95–104

    CAS  Google Scholar 

  • Nasher E, Heng LY, Zakaria Z, Surif S (2013) Concentrations and sources of polycyclic aromatic hydrocarbons in the seawater around Langkawi island, Malaysia. J Chem 2013, Article ID 975781

    Google Scholar 

  • Neff JM, Ostazeski SA, Macomber SC, Roberts LG, Gardiner W, Word KQ (1998) Weathering, chemical composition and toxicity of four Western Australian crude oils. Report to Apache Energy Ltd. Apache Energy Ltd., Perth, WA

    Google Scholar 

  • Neff JM, Stout SA, Gunster DG (2005) Ecological risk assessment of polycyclic aromatic hydrocarbons in sediments: identifying sources and ecological hazard. Integr Environ Assess Manag 1:22–33

    CAS  Google Scholar 

  • Neff JM, Bence AE, Parker KR, Page DS, Brown JS, Boehm PD (2006) Bioavailability of polycyclic aromatic hydrocarbons from buried shoreline oil residues thirteen years after the Exxon Valdez oil spill: a multispecies assessment. Environ Toxicol Chem 25:947–961

    CAS  Google Scholar 

  • Nordtest (1991) Nordtest method. NT Chem 001, 2nd edn. Nordtest, Espoo, Finland, p 7

    Google Scholar 

  • O’Malley VP, Abrajano TA, Hellou J (1994) Determination of the 13C/12C ratios of individual PAH from environmental samples: can PAH sources be apportioned? Org Geochem 21:809–822

    Google Scholar 

  • O’Malley VP, Burke RA, Schlotzhauer WS (1997) Using GC-MS/Combustion/IRMS to determine hydrocarbons produced from the combustion of biomass materials – application to biomass burning. Org Geochem 27:567–581

    Google Scholar 

  • O’Reilly K, Pietari J, Boehm P (2012) Forensic assessment of refined tar-based sealers as a source of polycyclic aromatic hydrocarbon (PAHs) in urban sediments. Environ Forens 13:185–196

    Google Scholar 

  • O’Reilly KT, Pietari J, Boehm PD (2014) Parsing pyrogenic polycyclic aromatic hydrocarbons: forensic chemistry, receptor models, and source control policy. Integr Environ Assess Manag 10:279–285. doi:10.1002/ieam.1506

    Google Scholar 

  • Oanh NTK, Reutergardh LB, Dung NT (1999) Emission of polycyclic aromatic hydrocarbons and particulate matter from domestic combustion of selected fuels. Environ Sci Technol 33:2703–2709

    CAS  Google Scholar 

  • Oanh NTK, Kongpran J, Hang NT, Parkpian P, Hung NTQ, Lee SB, Bae GN (2013) Characterization of gaseous pollutants and PM2.5 at fixed roadsides and along vehicle traveling routes in Bangkok Metropolitan Region. Atmos Environ 77:674–685

    Google Scholar 

  • Okuda T, Kumata H, Zakaria MP, Naraoka H, Ishiwatari R, Takada H (2002) Source identification of Malaysian atmospheric polycyclic aromatic hydrocarbons nearby forest fires using molecular and isotopic compositions. Atmos Environ 36:611–618

    CAS  Google Scholar 

  • Ollivon D, Blanchard M, Garban B (1999) PAH fluctuations in rivers in the Paris region (France): impact of floods and rainy events. Wat Air Soil Poll 115:429–444

    CAS  Google Scholar 

  • Orecchio S (2010) Contamination from polycyclic aromatic hydrocarbons (PAHs) in the soil of a botanic garden localized next to a former manufacturing gas plant in Palermo (Italy). J Hazard Mater 180:590–601

    CAS  Google Scholar 

  • Oros DR, Simoneit BRT (2000) Identification and emission rates of molecular tracers in coal smoke particulate matter. Fuel 79:515–536

    CAS  Google Scholar 

  • Ou S, Zheng J, Zheng J, Richardson BJ, Lam PKS (2004) Petroleum hydrocarbons and polycyclic aromatic hydrocarbons in the surficial sediments of Xiamen Harbour and Yuan Dan Lake China. Chemosphere 56:107–112

    CAS  Google Scholar 

  • Page DS, Boehm PD, Douglas GS, Bence AE, Burns WA, Mankiewicz PJ (1996) The natural petroleum hydrocarbon background in subtidal sediments of Prince William Sound, Alaska, USA. Environ Toxicol Chem 15:1266–1281

    CAS  Google Scholar 

  • Page DS, Boehm PD, Douglas GS, Bence AE, Burns WA, Mankiewicz PJ (1999) Pyrogenic polycyclic aromatic hydrocarbons in sediments record past human activity: a case study in Prince William Sound, Alaska. Mar Pollut Bull 38:247–260

    CAS  Google Scholar 

  • Page DS, Bence AE, Burns WA, Boehm PD, Brown JS, Douglas GS (2003) The role of petroleum geochemistry in defining oil spill recovery: examples from the Exxon Valdez spill in Prince William Sound, Alaska. In: Proceedings of the 2003 International Oil Spill Conference: Publication No. I 4730 B. American Petroleum Institute, Washington, DC, pp 1–8

    Google Scholar 

  • Page DS, Brown JS, Boehm PD, Bence AE, Neff JM (2006) A hierarchical approach measures the aerial extent and concentration levels of PAH-contaminated shoreline sediments at historic industrial sites in Prince William Sound, Alaska. Mar Pollut Bull 52:367–379

    CAS  Google Scholar 

  • Pavlova A, Ivanova R (2003) Determination of petroleum hydrocarbons and polycyclic aromatic hydrocarbons in sludge from wastewater treatment basins. J Environ Monit 5:319–323

    CAS  Google Scholar 

  • Park SS, Kim YJ, Kang CH (2002) Atmospheric polycyclic aromatic hydrocarbons in Seoul, Korea. Atmos Environ 36:2917–2924

    CAS  Google Scholar 

  • Pereira WE, Hostettler FD, Luoma SN, Van Geen A, Fuller CC, Anima RJ (1999) Sedimentary record of anthropogenic and biogenic polycyclic aromatic hydrocarbons in San Francisco Bay, California. Mar Chem 64:99–113

    CAS  Google Scholar 

  • Peters KE, Walters CC, Moldowan M (2005) The biomarker guide. Biomarkers and isotopes in the environment and human history, vol 1, 2nd edn. Cambridge University Press, Cambridge, pp 296–312

    Google Scholar 

  • Philp RP (2007) The emergence of stable isotopes in environmental and forensic geochemistry studies: a review. Environ Chem Lett 5:57–66

    CAS  Google Scholar 

  • Pies C, Hoffman B, Petrowsky J, Yang Y, Ternes TA, Hofmann T (2008) Characterization and source identification of polycyclic aromatic hydrocarbons (PAHs) in river bank soils. Chemosphere 72:1594–1601

    CAS  Google Scholar 

  • Radke M, Willsch H, Leythaeuser D, Teichmuller M (1982) Aromatic components of coal: relation of distribution pattern to rank. Geochim Cosmochim Acta 46:1831–1848

    CAS  Google Scholar 

  • Ravindra K, Sokhi R, Van Grieken R (2008) Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmos Environ 42:2895–2921

    CAS  Google Scholar 

  • Riddle SG, Jakober CA, Robert MA, Cahill TM, Charles MJ, Kleeman MJ (2007) Large PAHs detected in fine particulate matter emitted from light-duty gasoline vehicles. Atmos Environ 41:8658–8668

    CAS  Google Scholar 

  • Roush JA, Mauro DM (2009) Site assessment for proposed coke point dredged material containment facility at Sparrows Point. Baltimore County, Maryland Attachment IV. Analytical report – environmental forensics for soil and sediment samples, T06006Forensic 090717, META Environmental Inc, Watertown, MA

    Google Scholar 

  • Saber DL, Mauro D, Sirivedhin T (2005) Applications of forensic chemistry to environmental work. J Ind Microbiol Biotechnol 32:665–668

    CAS  Google Scholar 

  • Saber D, Mauro D, Sirivedhin T (2006) Environmental forensic investigation in sediments near a former manufactured gas plant site. Environ Forens 7:65–75

    CAS  Google Scholar 

  • Saha M, Togo A, Mizukawa K, Murakami M, Takada H, Zakaria MP, Chiem NH, Tuyen BC, Prudente M, Boonyatumanond R, Sarkar SK, Bhattacharya B, Mishra P, Tana TS (2009) Sources of sedimentary PAHs in tropical Asian waters: differentiation between pyrogenic and petrogenic sources by alkyl homolog abundance. Mar Pollut Bull 58:189–200

    CAS  Google Scholar 

  • Sander LC, Wise SA (1997) Polycyclic aromatic hydrocarbon structure index. NIST Special Publication 922, NSPUE2. United States Department of Commerce Technology Administration, National Institute of Standards and Technology, Gaithersburg, MD, pp 1–105

    Google Scholar 

  • Schwarzenbach RP, Gschwend PM, Imboden DM (2003) Environmental organic chemistry, 2nd edn. Wiley-Interscience, Totowa, NJ, pp 1197–1208

    Google Scholar 

  • Short JW, Irvine GV, Mann DH, Maselko JM, Pella JJ, Lindeberg MR, Payne JR, Driskell WB, Rice SD (2007) Slightly weathered Exxon Valdez oil persists in gulf of Alaska beach sediments after 16 years. Environ Sci Technol 41:1245–1250

    CAS  Google Scholar 

  • Shreadah MA, Said TO, Abd El Monem MI, Fathallah EMI, Mahmoud ME (2011) PAHs in sediments along the semi-closed areas of Alexandria. Egypt J Environ Prot 2:700–709

    CAS  Google Scholar 

  • Sicre MA, Marty JC, Saliot A, Aparicio X, Grimalt J, Albaiges J (1987) Aliphatic and aromatic hydrocarbons in different sized aerosols over the Mediterranean Sea: occurrence and origin. Atmos Environ 21:2247–2259

    CAS  Google Scholar 

  • Simcik MF, Eisenreich SJ, Lioy PJ (1999) Source apportionment and source/sink relationships of PAHs in the coastal atmosphere of Chicago and Lake Michigan. Atmos Environ 33:5071–5079

    CAS  Google Scholar 

  • Simoneit BRT (1985) Application of molecular marker analysis to vehicular exhaust for source reconciliations. Int J Environ Anal Chem 22:203–233

    CAS  Google Scholar 

  • Soclo HH, Garrigues PH, Ewald M (2000) Origin of polycyclic aromatic hydrocarbons (PAHs) in coastal marine sediments: case studies in Cotonou (Benin) and Aquitaine (France) areas. Mar Pollut Bull 40:387–396

    CAS  Google Scholar 

  • Sofowote UM, McCarry BE, Marvin CH (2008) Source apportionment of PAH in Hamilton Harbour suspended sediments: Comparison of two factor analysis methods. Environ Sci Technol 42:6007–6014

    CAS  Google Scholar 

  • Sofowote UM, Allan LM, McCarry BE (2009) Evaluation of PAH diagnostic ratios as source apportionment tools for air particulates collected in an urban-industrial environment. J Environ Monit 12:417–424

    Google Scholar 

  • Sofowote UM, Hung H, Rastogi AK, Westgate JN, Deluca PF, Su Y, McCarry BE (2011) Assessing the long-range transport of PAH to a sub-Arctic site using positive matrix factorization and potential source contribution function. Atmos Environ 45:967–976

    CAS  Google Scholar 

  • Sporstol S, Gjos N, Lichtenthaler RG, Gustavsen KO, Urdal K, Oreld F, Skel J (1983) Source identification of aromatic hydrocarbons in sediments using GC/MS. Environ Sci Technol 17:282–286

    CAS  Google Scholar 

  • Stark A, Abrajano T, Hellou J, Metcalf-Smith JL (2003) Molecular and isotopic characterization of polycyclic aromatic hydrocarbon distribution and sources at the international segment of the St. Lawrence River. Org Geochem 34:225–237

    CAS  Google Scholar 

  • Stout SA (2007) Characterization and source of unknown “tar-like material” and “slag” in a former oil field in Compton, California. Environ Forens 8:265–282

    CAS  Google Scholar 

  • Stout SA, Wang Z (2007) Chemical fingerprinting of spilled or discharged petroleum – methods and factors affecting petroleum fingerprints in the environment. In: Wang Z, Stout SA (eds) Oil spill environmental forensics. Fingerprinting and source identification. Elsevier, Boston, MA, pp 1–54

    Google Scholar 

  • Stout SA, Emsbo-Mattingly SD (2008) Concentration and character of PAHs and other hydrocarbons in coals of varying rank – implications for environmental studies of soils and sediments containing particulate coal. Org Geochem 39:801–819

    CAS  Google Scholar 

  • Stout SA, Graan TP (2010) Quantitative source apportionment of PAHs in sediments of Little Menomonee River, Wisconsin: weathered creosote versus urban background. Environ Sci Technol 44:2932–2939

    CAS  Google Scholar 

  • Stout SA, Magar VX, Uhler RM, Ickes J, Abbott J, Brenner R (2001a) Characterization of naturally occurring and anthropogenic PAHs in urban sediments Wyckoff/Eagle Harbor Superfund site. Environ Forens 2:287–300

    CAS  Google Scholar 

  • Stout SA, Uhler AD, Boehm PD (2001b) Recognition of and allocation among multiple sources of PAH in urban sediments. Environ Claims J 13:141–158

    Google Scholar 

  • Stout SA, Magar VX, Uhler RM, McCarthy KJ, Emsbo-Mattingly S (2002) Chemical fingerprinting of hydrocarbons. In: Murphy BL, Morrison RD (eds) Introduction to environmental forensics, 1st edn. Academic, New York, NY, pp 137–260

    Google Scholar 

  • Stout SA, Leather JM, Corl WE III (2003) A user’s guide for determining the sources of contaminants in sediments. Technical report 1907. Spawar Systems Center, San Diego, CA, pp 1–85

    Google Scholar 

  • Stout SA, Uhler AD, Emsbo-Mattingly SD (2004) Comparative evaluation of background anthropogenic hydrocarbons in surficial sediments from nine urban waterways. Environ Sci Technol 38:2987–2994

    CAS  Google Scholar 

  • Stout SA, Douglas GS, Uhler AD, McCarthy KJ, Emsbo-Mattingly SD (2005) Identifying the source of mystery waterborne oil spills – a case for quantitative chemical fingerprinting. Environ Claims J 17:71–88

    Google Scholar 

  • Stout SA, Uhler AD, McCarthy KJ (2006) Chemical characterization and sources of distillate fuels in the subsurface of Mandan, North Dakota. Environ Forens 7:267–282

    CAS  Google Scholar 

  • Stout SA, Liu B, Millner GC, Hamlin D, Healey E (2007) Use of chemical fingerprinting to establish the presence of spilled crude oil in a residential area following hurricane Katrina, St. Bernard Parish, Louisiana. Environ Sci Technol 41:7242–7251

    CAS  Google Scholar 

  • Swietlik R, Kowalczyk D, Dojlido J (2002) Influence of selected physicochemical factors on the degradation of PAHs in water. Pol J Environ Stud 11:165–169

    CAS  Google Scholar 

  • Takada H, Onda T, Ogura N (1990) Determination of polycyclic aromatic hydrocarbons in urban street dusts and their source materials by capillary gas chromatography. Environ Sci Technol 24:1179–1186

    CAS  Google Scholar 

  • Tan JH, Duan JC, Chen DH, Wang XH, Guo SJ, Bi XH, Sheng GY, He KB, Fu JM (2009) Chemical characteristics of haze during summer and winter in Guangzhou. Atm Res 94:238–245

    CAS  Google Scholar 

  • Tobiszewski M, Namiesnik J (2012) PAH diagnostic ratios for the identification of pollution emission sources. Environ Pollut 162:110–119

    CAS  Google Scholar 

  • Uhler AD, Emsbo-Mattingly SD (2006) Environmental stability of PAH source indices in pyrogenic tars. Bull Environ Contam Toxicol 76:689–696

    CAS  Google Scholar 

  • Uhler AD, Stout SA, Douglas GS (2007) Chemical heterogeneity in modern marine residual fuel oils. In: Wang Z, Stout SA (eds) Oil spill environmental forensics. Fingerprinting and source identification. Elsevier, Boston, MA, pp 327–348

    Google Scholar 

  • Valle S, Panero MA, Shor L (2007) Pollution prevention and management strategies for polycyclic aromatic hydrocarbons in the New York/New Jersey Harbor. Academy of Sciences, New York, NY

    Google Scholar 

  • Van Drooge BL, Crusack M, Reche C, Mohr C, Alastuey A, Querol X, Prevot A, Day DA, Jimenez JL, Grimalt JO (2012) Molecular marker characterization of the organic composition of submicron aerosols from Mediterranean urban and rural environments under contrasting meteorological conditions. Atmos Environ 61:482–489

    Google Scholar 

  • Van Metre PC, Mahler BJ (2010) Contribution of PAHs from coal-tar pavement sealcoat and other sources to 40 U.S. lakes. Sci Total Environ 409:334–344

    Google Scholar 

  • Venkatesan MI (1988) Occurrence and possible sources of perylene in marine sediments–a review. Mar Chem 25:1–27

    CAS  Google Scholar 

  • Walker SE, Dickhut RM (2001) Sources of PAHs to sediments of the Elizabeth River, VA. Soil Sedim Contam 10:611–632

    CAS  Google Scholar 

  • Wang Z, Fingas M (1995) Use of methyldibenzothiophenes as markers for differentiation and source identification of crude and weathered oils. Environ Sci Technol 29:2842–2849

    CAS  Google Scholar 

  • Wang Z, Fingas MF (2003) Development of oil hydrocarbon fingerprinting and identification techniques. Mar Pollut Bull 47:423–452

    CAS  Google Scholar 

  • Wang Z, Brown C (2009) Chemical fingerprinting of petroleum hydrocarbons. In: Mudge SM (ed) Methods in environmental forensics. CRC Press, Boca Raton, FL, pp 43–112

    Google Scholar 

  • Wang Z, Fingas M, Blenkinsopp S, Sergy G, Landriault M, Sigouin L (1998) Comparison of oil composition changes due to biodegradation and physical weathering in different oils. J Chromatogr A 809:89–107

    CAS  Google Scholar 

  • Wang Z, Fingas M, Page DS (1999a) Oil spill identification. J Chromatogr A 843:369–411

    CAS  Google Scholar 

  • Wang Z, Fingas M, Shu YY, Sigouin L, Landriault M, Lambert P, Turpin R, Campagna P, Mullin J (1999b) Quantitative characterization of PAHs in burn residue and soot samples and differentiation of pyrogenic PAHs from petrogenic PAHs – the 1994 mobile burn study. Environ Sci Technol 33:3100–3109

    CAS  Google Scholar 

  • Wang Z, Fingas M, Sigouin L (2001) Characterization and identification of a “mystery” oil spill from Quebec (1999). J Chromatogr A 909:155–169

    CAS  Google Scholar 

  • Wang Z, Fingas M, Lambert P, Zeng G, Yang C, Hollebone B (2004) Characterization and identification of the Detroit River mystery oil spill (2002). J Chromatogr A 1038:201–214

    CAS  Google Scholar 

  • Wang Z, Li K, Lambert P, Yang C (2006) Identification, characterization and quantitation of pyrogenic polycyclic aromatic hydrocarbons and other organic compounds in tire fire products. J Chromatogr A 1139:14–26

    Google Scholar 

  • Wang Z, Yang C, Brown C, Hollebone B, Landriault M (2009) A case study: distinguishing pyrogenic hydrocarbons from petrogenic hydrocarbons. In: Proceedings of 2008 International Oil Spill Conference. American Petroleum Institute, National Research Council (NRC) 1999, National Academy Press, Washington, DC, pp 311–320

    Google Scholar 

  • Wang Z, Yang C, Parrot JL, Frank RA, Yang Z, Brown CE, Hollebone BP, Landriault M, Fieldhouse B, Liu Y, Zhang G, Hewitt LM (2014) Forensic source differentiation of petrogenic, pyrogenic, and biogenic hydrocarbons in Canadian oil sands environmental samples. J Hazard Mater 271:166–177

    CAS  Google Scholar 

  • Wickramasinghe AP, Karunaratne DGGP, Sivakanesan R (2011) PM10-bound polycyclic aromatic hydrocarbons: Concentrations, source characterization and estimating their risk in urban, suburban and rural areas in Kandy, Sri Lanka. Atmos Environ 45:2642–2650

    CAS  Google Scholar 

  • Wilcke W, Krauss M, Amelung W (2002) Carbon isotope signature of polycyclic aromatic hydrocarbons (PAHs): evidence for different sources in tropical and temperate environments? Environ Sci Technol 36:3530–3535

    CAS  Google Scholar 

  • Williams PT, Bartle KD, Andrews GE (1986) The relation between polycyclic aromatic compounds in diesel fuels and exhaust particulates. Fuel 65:1150–1158

    CAS  Google Scholar 

  • Windsor JG, Hites RA (1979) Polycyclic aromatic hydrocarbons in Gulf of Maine sediments and Nova Scotia soils. Geochim Cosmochim Acta 43:27–33

    CAS  Google Scholar 

  • Yan B, Abrajano TA, Bopp RF, Chaky DA, Benedict L, Chillrud SN (2005) Molecular tracers of saturated and polycyclic aromatic hydrocarbon inputs into Central Park Lake, New York City. Environ Sci Technol 39:7012–7019

    CAS  Google Scholar 

  • Yan B, Abrajano TA, Bopp RF, Benedict LA, Chaky DA, Perry E, Song J, Keane DP (2006) Combined application of δ13C and molecular ratios in sediment cores for PAH source apportionment in the New York/New Jersey harbor complex. Org Geochem 37:674–687

    CAS  Google Scholar 

  • Yan B, Bopp RF, Chaky DA, Chillrud SN, Abrajano TA (2007) Organic contaminant sources to the lower Hudson basin. Environmental monitoring and protection in New York: linking science and policy, Poster Abstracts, NYSERDA, 15–16 November, New York, NY

    Google Scholar 

  • Yang HH, Lai SO, Hsieh LS, Hsueh LJ, Chi TW (2002) Profiles of PAH emission from steel and iron industries. Chemosphere 48:1061–1074

    CAS  Google Scholar 

  • Youngblood WW, Blumer M (1975) Polycyclic aromatic hydrocarbons in the environment: homologous series in soils and recent marine sediments. Geochim Cosmochim Acta 39:1303–1314

    CAS  Google Scholar 

  • Yunker MB, Macdonald RW, Vingarzan R, Mitchel RH, Goyette D, Sylvestre S (2002) PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem 33:489–515

    CAS  Google Scholar 

  • Yunker MB, Lachmuth CL, Cretney WJ, Fowler BR, Dangerfield N, White L, Ross PS (2011) Biota-sediment partitioning of aluminium smelter related PAHs and pulp mill related diterpenes by intertidal clams at Kitimat, British Columbia. Mar Environ Res 72:105–126

    CAS  Google Scholar 

  • Zakaria MP, Takada H, Tsutsumi S, Ohno K, Yamada J, Kound E, Kumata H (2002) Distribution of polycyclic aromatic hydrocarbons (PAHs) in rivers and estuaries in Malaysia: a widespread input of petrogenic PAHs. Environ Sci Technol 36:1907–1918

    CAS  Google Scholar 

  • Zakaria MP, Takada H (2007) 16 Case study: oil spills in the strait of Malacca, Malaysia. In: Wang Z, Stout SA (eds) Oil spill environmental forensics. Fingerprinting and source identification. Elsevier, Boston, MA, pp 489–504

    Google Scholar 

  • Zeng EY, Vista CL (1997) Organic pollutants in the coastal environment off San Diego, California. 1. Source identification and assessment by compositional indices of polycyclic aromatic hydrocarbons. Environ Toxicol Chem 16:179–188

    CAS  Google Scholar 

  • Zhang XL, Tao S, Liu WX, Yang Y, Zuo Q, Liu Z (2005) Source diagnostics of polycyclic aromatic hydrocarbons based on species ratios: A multimedia approach. Environ Sci Technol 39:9109–9114

    CAS  Google Scholar 

  • Zhu X, Fan ZT, Wu X, Jung KH, Ohman-Strickland P, Bonanno LJ, Lioy PJ (2011) Ambient concentrations and personal exposure to polycyclic aromatic hydrocarbons (PAH) in an urban community with mixed sources of air pollution. J Expos Sci Environ Epidemiol 21:437–449

    CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Dr. J. Haftka, Prof. Dr. P. de Voogt and an anonymous reviewer for their helpful and critical comments and suggestions. Dr. J. Burrough was our language editor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Efstathios Stogiannidis .

Editor information

Editors and Affiliations

1 Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

Supporting Material (DOC 4165 kb)

Appendix

Appendix

Table 5 Key to literature data cited in figures

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Stogiannidis, E., Laane, R. (2015). Source Characterization of Polycyclic Aromatic Hydrocarbons by Using Their Molecular Indices: An Overview of Possibilities. In: Whitacre, D. (eds) Reviews of Environmental Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology, vol 234. Springer, Cham. https://doi.org/10.1007/978-3-319-10638-0_2

Download citation

Publish with us

Policies and ethics