Skip to main content
Log in

Glyphosate Effects on Some Characteristics of Biological Activity and Phytotoxicity of Soddy-Podzolic Soil in a Short-Term Model Experiment

  • AGRICULTURAL MICROBIOLOGY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

A model laboratory experiment on arable soil with low organic content and low biological activity showed short-term changes in the intensity of the main microbiological processes of the nitrogen transformation in soil after the application of glyphosate. The soil incubation with glyphosate at the maximum recommended dose of 8 L/ha for 22 days resulted in an increase in nitrogen-fixing and denitrifying activities by 30–80 and 300%, respectively, and in a decrease in nitrification by 20–40%. These effects were of a short-term nature and did not reflect the entire complex of ongoing microbiological processes. Glyphosate had no effect on the CO2 emission, an integral indicator of biological activity. At the end of incubation period, the soil with glyphosate was characterized by an increase in the number of bacteria by 40% and a decrease in the number of micromycetes by 70%. In general, under the selected conditions, the application of glyphosate led to a well-pronounced deterioration in the biological activity of the soil. The multisubstrate test showed that the application of glyphosate leads to an increase in the value of the coefficient of rank distribution of substrate utilization spectra (d) accompanied by a decrease in the specific metabolic activity (W) and the integral vitality index (G). It was shown for the first time that application of the glyphosate for the soil with a low biological activity and phosphorus availability, and the herbicide degradation with a break in the C–P bond excluding the formation of toxic metabolites have a pronounced negative effect on soil microorganisms, which leads to inhibition of wheat plant growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. E. V. Arinushkina, Manual on Soil Chemical Analyses (Mosk. Univ., Moscow, 1970) [in Russian].

    Google Scholar 

  2. M. V. Gorlenko, O. S. Yakimenko, M. V. Golichenkov, and N. V. Kostina, “Functional biodiversity of soil microbe colonies affected by organic substrates of different kinds,” Moscow Univ. Soil Sci. Bull. 67 (2), 71–78 (2012).

    Article  Google Scholar 

  3. A. D. Zhelezova, N. A. Manucharova, and M. V. Gorlenko, “Structural and functional characteristics of the prokaryotic community of soddy-podzolic soil influenced by the herbicide glyphosate,” Moscow Univ. Soil Sci. Bull. 73 (2), 89–94 (2018).

    Article  Google Scholar 

  4. Method for Measuring the Intensity of Consumption of Test Substrates by Microbial Communities of Soils and Soil-Like Objects by the Photometric Method: FR.1.37.2010.08619; PND FT 16.1.17-10 (Moscow, 2010).

  5. Methods of Soil Microbiology and Biochemistry, Ed. by D. G. Zvyagintsev (Mosk. Univ., Moscow, 1991) [in Russian].

    Google Scholar 

  6. A. V. Sviridov, T. V. Shushkova, I. T. Ermakova, E. V. Ivanova, D. O. Epiktetov, and A. A. Leontievsky, “Microbial degradation of glyphosate herbicides (review),” Appl. Biochem. Microbiol. 51 (2), 188–195 (2015). https://doi.org/10.1134/S0003683815020209

    Article  Google Scholar 

  7. A. L. Stepanov and L. V. Lysak, Methods of Gas Chromatography in Soil Microbiology (MAKS Press, Moscow, 2002) [in Russian].

    Google Scholar 

  8. M. M. Umarov, A. V. Kurakov, and A. L. Stepanov, Microbiological Transformation of Nitrogen in Soil (GEOS, Moscow, 2007) [in Russian].

    Google Scholar 

  9. O. I. Filippova, N. A. Kulikova, Ya. S. Bychkova, A. B. Volikov, and I. V. Perminova, “Delayed release of nitrogen from humic substances modified with aminoorganosilanes,” Probl. Agrokhim. Ekol., No. 1, 42–47 (2015).

  10. L. A. Yuzganinova, Glyphosate: application in the Russian and global markets, Agroxxi.ru: Agro-Industrial Portal (Moscow, 1995–2022). https://www.agroxxi. ru/gazeta-zaschita-rastenii/zrast/glifosat-primenenie-na-rossiiskom-i-globalnom-rynkah.html. Cited July 27, 2022.

  11. V. O. Adero, N. S. Raju, and M. Supreeth, “Effect of glyphosate herbicide on nitrogen fixing bacteria – Azotobacter species,” J. Environ. Chem. Toxicol. 4 (2), 1–7 (2020).

    Google Scholar 

  12. L. Aristilde, M. L. Reed, R. A. Wilkes, T. Youngster, M. A. Kukurugya, V. Katz, and C. R. S. Sasaki, “Glyphosate-induced specific and widespread perturbations in the metabolome of soil Pseudomonas species,” Front. Environ. Sci. 5, 34 (2017). https://doi.org/10.3389/fenvs.2017.00034

    Article  Google Scholar 

  13. F. R. Atherton, M. J. Hall, C. H. Hassall, R. W. Lambert, W. J. Lloyd, P. S. Ringrose, and D. Westmacott, “Antibacterial activity and mechanism of action of phosphonopeptides based on aminomethylphosphonic acid,” Antimicrob. Agents Chemother. 22, 571–578 (1982).

    Article  Google Scholar 

  14. O. K. Borggaard and L. Gimsing, “Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: a review,” Pest Manage. Sci. 64, 441–456 (2008). https://doi.org/10.1002/ps.1512

    Article  Google Scholar 

  15. S. Bott, T. Tesfamariam, A. Kania, B. Eman, N. Aslan, V. Romheld, and G. Neumann, “Phytotoxicity of glyphosate soil residues re-mobilised by phosphate fertilization,” Plant Soil 342, 249–263 (2011). https://doi.org/10.1007/s11104-010-0689-3

    Article  Google Scholar 

  16. S. M. Carlisle and J. T. Trevors, “Effect of the herbicide glyphosate on nitrification, denitrification, and acetylene reduction in soil,” Water, Air, Soil Pollut. 29, 189–203 (1986). https://doi.org/10.1007/BF00208408

    Article  Google Scholar 

  17. M. X. Chen, Z. Y. Cao, Y. Jiang, and Z. W. Zhu, “Direct determination of glyphosate and its major metabolite, aminomethylphosphonic acid, in fruits and vegetables by mixed-mode hydrophilic interaction/weak anion-exchange liquid chromatography coupled with electrospray tandem mass spectrometry,” J. Chromatogr. A 1272, 90–99 (2013).

    Article  Google Scholar 

  18. A. E. Cherni, D. Trabelsi, S. Chebil, F. Barhoumi, I. D. Rodríguez-Llorente, and K. Zribi, “Effect of glyphosate on enzymatic activities, Rhizobiaceae and total bacterial communities in an agricultural Tunisian soil,” Water, Air, Soil Pollut. 226, 145 (2015). https://doi.org/10.1007/s11270-014-2263-8

    Article  Google Scholar 

  19. R. E. Dick and J. P. Quinn, “Glyphosate-degrading isolates from environmental samples: occurrence and pathways of degradation,” Appl. Microbiol Biotechnol. 43, 545–550 (1995). https://doi.org/10.1007/BF00218464

    Article  Google Scholar 

  20. C. Druart, O. Delhomme, A. de Vaufleury, E. Ntcho, and M. Millet, “Optimization of extraction procedure and chromatographic separation of glyphosate, glufosinate and aminomethylphosphonic acid in soil,” Anal. Bioanal. Chem. 399, 1725–1732 (2011). https://doi.org/10.1007/s00216-010-4468-z

    Article  Google Scholar 

  21. B. Fuchs, M. Laihonen, A. Muola, K. Saikkonen, P. I. Dobrev, R. Vankova, and M. A. Helander, “Glyphosate-based herbicide in soil differentially affects hormonal homeostasis and performance of non-target crop plants,” Front. Plant Sci. 12, 787958 (2022). https://doi.org/10.3389/fpls.2021.787958

    Article  Google Scholar 

  22. M. P. Gomes, E. Smedbol, A. Chalifour, L. Hénault-Ethier, M. Labrecque, L. Lepage, M. Lucotte, and Ph. Juneau, “Alteration of plant physiology by glyphosate and its by-product aminomethylphosphonic acid: an overview,” J. Exp. Bot. 65, 4691–4703 (2014). https://doi.org/10.1093/jxb/eru269

    Article  Google Scholar 

  23. M. Helander, A. Pauna, K. Saikkonen, and I. Saloniemi, “Glyphosate residues in soil affect crop plant germination and growth,” Sci. Rep. 9, 19653 (2019). https://doi.org/10.1038/s41598-019-56195-3

    Article  Google Scholar 

  24. M. Helander, I. Saloniemi, and K. Saikkonen, “Glyphosate in northern ecosystems,” Trends Plant Sci. 17, 569e574 (2012).

  25. ISO 10694:1995 Soil Quality—Determination of Organic and Total Carbon after Dry Combustion (Elementary Analysis).

  26. M. B. Jenkins, M. A. Locke, K. N. Reddy, D. S. McChesney, and R. W. Steinriede, “Impact of glyphosate-resistant corn, glyphosate applications and tillage on soil nutrient ratios, exoenzyme activities and nutrient acquisition ratios,” Pest Manage. Sci. 73, 78–86 (2017).

    Article  Google Scholar 

  27. N. A. Kulikova, O. I. Philippova, Y. S. Bychkova, A. B. Volikov, and I. V. Perminova, “Nitrogen release from natural and aminoorganosilane-modified humic substances,” in Functions of Natural Organic Matter in Changing Environment (Springer, Dordrecht, 2013). https://doi.org/10.1007/978-94-007-5634-2_84

  28. K. M. Kyaw and K. Toyota, “Suppression of nitrous oxide production by the herbicides glyphosate and propanil in soils supplied with organic matter,” Soil Sci. Plant Nutr. 53, 441–447 (2007). https://doi.org/10.1111/j.1747-0765.2007.00151.x

    Article  Google Scholar 

  29. S. H. Lancaster, E. B. Hollister, S. A. Senseman, and T. J. Gentry, “Effects of repeated glyphosate applications on soil microbial community composition and the mineralization of glyphosate,” Pest Manage. Sci. 66, 59–64 (2010). https://doi.org/10.1002/ps.1831

    Article  Google Scholar 

  30. L. Leino, T. Tall, M. Helander, I. Saloniemi, K. Saikkonen, S. Ruuskanen, and P. Puigbò, “Classification of the glyphosate target enzyme (5-enolpyruvylshikimate-3-phosphate synthase) for assessing sensitivity of organisms to the herbicide,” J. Hazard. Mater. 408, 124556 (2020). https://doi.org/10.1016/j.jhazmat.2020.124556

    Article  Google Scholar 

  31. N. Milosevic and M. Govedarica, “Effect of herbicides on microbiological properties of soil,” Matica Srp. J. Nat. Sci. 102, 5–21 (2002).

    Article  Google Scholar 

  32. S. Munira, A. Farenhorst, D. Flaten, and C. Grant, “Phosphate fertilizer impacts on glyphosate sorption by soil,” Chemosphere 153, 471–477 (2016). https://doi.org/10.1016/j.chemosphere.2016.03.028

    Article  Google Scholar 

  33. S. Nardi, D. Pizzeghello, C. Gessa, L. Ferrarese, L. Trainotti, and G. Casadoro, “A low molecular weight humic fraction on nitrate uptake and protein synthesis in maize seedlings,” Soil Biol. Biochem. 32, 415–419 (2000).

    Article  Google Scholar 

  34. M. M. Newman, N. Hoilett, N. Lorenz, R. P. Dick, M. R. Liles, C. Ramsier, and J. W. Kloepper, “Glyphosate effects on soil rhizosphere-associated bacterial communities,” Sci. Total Environ. 543, 155–160 (2016). https://doi.org/10.1016/j.scitotenv.2015.11.008

    Article  Google Scholar 

  35. D. B. Nguyen, M. T. Rose, T. J. Rose, S. G. Morris, and L. van Zwieten, “Impact of glyphosate on soil microbial biomass and respiration: a meta-analysis,” Soil Biol. Biochem. 92, 50–57 (2016). https://doi.org/10.1016/j.soilbio.2015.09.014

    Article  Google Scholar 

  36. E. Nivelle, J. Verzeaux, A. Chabot, D. Roger, Q. Chesnais, A. Ameline, and M. Catterou, “Effects of glyphosate application and nitrogen fertilization on the soil and the consequences on aboveground and belowground interactions,” Geoderma 311, 45–57 (2018). https://doi.org/10.1016/j.geoderma.2017.10.0

    Article  Google Scholar 

  37. E. Nivelle, J. Verzeaux, A. Chabot, D. Roger, F. Spicher, J. Lacoux, J. E. Nava-Saucedo, M. Catterou, and T. Tétu, “Does nitrogen fertilization history affects short-term microbial responses and chemical properties of soils submitted to different glyphosate concentrations,” PLoS One 12, e0178342 (2017).

    Article  Google Scholar 

  38. E. Okada, J. L. Costa, and F. Bedmar, “Glyphosate dissipation in different soils under no-till and conventional tillage,” Pedosphere 29, 773–783 (2019).

    Article  Google Scholar 

  39. V. Silva, L. Montanarella, A. Jones, O. Fernández–Ugalde, H. G. J. Mol, C. J. Ritsema, and V. Geissen, “Distribution of glyphosate and aminomethylphosphonic acid (AMPA) in agricultural topsoils of the European Union,” Sci. Total Environ. 621, 1352–1359 (2018). https://doi.org/10.1016/j.scitotenv.2017.10.093

    Article  Google Scholar 

  40. G. W. Stratton and K. E. Stewart, “Effects of the herbicide glyphosate on nitrogen cycling in an acid forest soil,” Water, Air, Soil Pollut. 60, 231–247 (1991). https://doi.org/10.1007/BF00282625

    Article  Google Scholar 

  41. M. Tenuta and E. G. Beauchamp, “Denitrification following herbicide application to a grass sward,” Can. J. Soil Sci. 76, 15–22 (1996).

    Article  Google Scholar 

  42. A. H. C. van Bruggen, M. M. He, K. Shin, V. Mai, K. C. Jeong, M. R. Finckh, and J. G. Morris Jr., “Environmental and health effects of the herbicide glyphosate,” Sci. Total Environ. 616–617, 255–268 (2018). https://doi.org/10.1016/j.scitotenv.2017.10.309

    Article  Google Scholar 

  43. R. M. Zablotowicz and K. N. Reddy, “Impact of glyphosate on the Bradyrhizobium japonicum symbiosis with glyphosate-resistant transgenic soybean: a mini review,” J. Environ. Qual. 33, 825–831 (2004).

    Article  Google Scholar 

  44. H. Zhan, Y. Feng, X. Fan, and S. Chen, “Recent advances in glyphosate biodegradation,” Appl. Microbiol. Biotechnol. 102, 5033–5043 (2018). https://doi.org/10.1007/s00253-018-9035-0

    Article  Google Scholar 

  45. M. Zhang, W. Wang, L. Tang, M. Heenan, and Z. Xu, “Effects of nitrification inhibitor and herbicides on nitrification, nitrite and nitrate consumptions and nitrous oxide emission in an Australian sugarcane soil,” Biol. Fertil. Soils 54, 697–706 (2018). https://doi.org/10.1007/s00374-018-1293-6

    Article  Google Scholar 

Download references

Funding

This study was carried out within the framework of the Development Program of the Interdisciplinary Scientific and Educational School of the Lomonosov Moscow State University “The Future of the Planet and Global Environmental Changes.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Kostina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by D. Konyushkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostina, N.V., Gorlenko, M.V., Mazurov, K.A. et al. Glyphosate Effects on Some Characteristics of Biological Activity and Phytotoxicity of Soddy-Podzolic Soil in a Short-Term Model Experiment. Eurasian Soil Sc. 56, 628–638 (2023). https://doi.org/10.1134/S1064229322602815

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229322602815

Keywords:

Navigation