Skip to main content

Advertisement

Log in

Recent advances in glyphosate biodegradation

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Glyphosate has emerged as the most widespread herbicide to control annual and perennial weeds. Massive use of glyphosate for decades has resulted in its ubiquitous presence in the environment, and poses a threat to humans and ecosystem. Different approaches such as adsorption, photocatalytic degradation, and microbial degradation have been studied to break down glyphosate in the environment. Among these, microbial degradation is the most effective and eco-friendly method. During its degradation, various microorganisms can use glyphosate as a sole source of phosphorus, carbon, and nitrogen. Major glyphosate degradation pathways and its metabolites have been frequently investigated, but the related enzymes and genes have been rarely studied. There are many reviews about the toxicity and fate of glyphosate and its major metabolite, aminomethylphosphonic acid. However, there is lack of reviews on biodegradation and bioremediation of glyphosate. The aims of this review are to summarize the microbial degradation of glyphosate and discuss the potential of glyphosate-degrading microorganisms to bioremediate glyphosate-contaminated environments. This review will provide an instructive direction to apply glyphosate-degrading microorganisms in the environment for bioremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Annett R, Habibi HR, Hontela A (2014) Impact of glyphosate and glyphosate-based herbicides on the freshwater environment. J Appl Toxicol 34(5):458–479

    Article  PubMed  CAS  Google Scholar 

  • Bai SH, Ogbourne SM (2016) Glyphosate: environmental contamination, toxicity and potential risks to human health via food contamination. Environ Sci Pollut Res 23(19):18988–19001

    Article  CAS  Google Scholar 

  • Balthazor TM, Hallas LE (1986) Glyphosate-degrading microorganisms from industrial activated sludge. Appl Environ Microbiol 51(2):432–434

    PubMed  PubMed Central  CAS  Google Scholar 

  • Benslama O, Boulahrouf A (2016) High-quality draft genome sequence of Enterobacter sp. Bisph2, a glyphosate-degrading bacterium isolated from a sandy soil of Biskra, Algeria. Genomics Data 8:61–66

    Article  PubMed  PubMed Central  Google Scholar 

  • Boocock MR, Coggins JR (1983) Kinetics of 5-enolpyruvylshikimate-3-phosphate synthase inhibition by glyphosate. FEBS Lett 154(1):127–133

    Article  PubMed  CAS  Google Scholar 

  • Botta F, Lavison G, Couturier G, Alliot F, Moreau-Guigon E, Fauchon N, Guery B, Chevreuil M, Blanchoud H (2009) Transfer of glyphosate and its degradate AMPA to surface waters through urban sewerage systems. Chemosphere 77(1):133–139

    Article  PubMed  CAS  Google Scholar 

  • Bujacz B, Wieczorek P, Krzysko-Lupicka T, Golab Z, Lejczak B, Kavfarski P (1995) Organophosphonate utilization by the wild-type strain of Penicillium notatum. Appl Environ Microbiol 61(8):2905–2910

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chen CM, Ye QZ, Zhu ZM, Wanner BL, Walsh CT (1990) Molecular biology of carbon-phosphorus bond cleavage. Cloning and sequencing of the phn (psiD) genes involved in alkylphosphonate uptake and C-P lyase activity in Escherichia coli B. J Biol Chem 265(8):4461–4471

    PubMed  CAS  Google Scholar 

  • Chen S, Lai KP, Li Y, Hu M, Zhang Y, Zeng Y (2011a) Biodegradation of deltamethrin and its hydrolysis product 3-phenoxybenzaldehyde by a newly isolated Streptomyces aureus strain HP-S-01. Appl Microbiol Biotechnol 90:1471–1483

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Yang L, Hu M, Liu J (2011b) Biodegradation of fenvalerate and 3-phenoxybenzoic acid by a novel Stenotrophomonas sp. strain ZS-S-01 and its use in bioremediation of contaminated soils. Appl Microbiol Biotechnol 90:755–767

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Geng P, Xiao Y, Hu M (2012) Bioremediation of β-cypermethrin and 3-phenoxybenzaldehyde contaminated soils using Streptomyces aureus HP-S-01. Appl Microbiol Biotechnol 94:505–515

    Article  PubMed  CAS  Google Scholar 

  • Dick RE, Quinn JP (1995) Control of glyphosate uptake and metabolism in Pseudomonas sp. 4ASW. FEMS Microbiol Lett 134(2–3):177–182

    Article  CAS  Google Scholar 

  • Dill GM (2005) Glyphosate-resistant crops: history, status and future. Pest Manag Sci 61(3):219–224

    Article  PubMed  CAS  Google Scholar 

  • Duke SO (2010) Glyphosate degradation in glyphosate-resistant and-susceptible crops and weeds. J Agric Food Chem 59(11):5835–5841

    Article  PubMed  CAS  Google Scholar 

  • Duke SO, Powles SB (2008) Glyphosate: a once‐in‐a‐century herbicide. Pest Manage Sci 64(4):319–325

  • Echavia GR, Matzusawa F, Negishi N (2009) Photocatalytic degradation of organophosphate and phosphonoglycine pesticides using TiO2 immobilized on silica gel. Chemosphere 76(5):595–600

    Article  PubMed  CAS  Google Scholar 

  • Ermakova IT, Kiseleva NI, Shushkova T, Zharikov M, Zharikov GA, Leontievsky AA (2010) Bioremediation of glyphosate-contaminated soils. Appl Microbiol Biotechnol 88(2):585–594

    Article  PubMed  CAS  Google Scholar 

  • Ermakova IT, Shushkova TV, Sviridov AV, Zelenkova NF, Vinokurova NG, Baskunov BP, Leontievsky AA (2017) Organophosphonates utilization by soil strains of Ochrobactrum anthropi and Achromobacter sp. Arch Microbiol 199(5):665–675

    Article  PubMed  CAS  Google Scholar 

  • Fan J, Yang G, Zhao H, Shi G, Geng Y, Hou T, Tao K (2012) Isolation, identification and characterization of a glyphosate-degrading bacterium, Bacillus cereus CB4, from soil. J Gen Appl Microbiol 58(4):263–271

    Article  PubMed  CAS  Google Scholar 

  • Firdous S, Iqbal S, Anwar S (2017a) Optimization and modeling of glyphosate biodegradation by a novel Comamonas odontotermitis P2 through response surface methodology. Pedosphere. https://doi.org/10.1016/S1002-0160(17)60381-3

  • Firdous S, Iqbal S, Anwar S, Jabeen H (2017b) Identification and analysis of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene from glyphosate resistant Ochrobactrum intermedium Sq20. Pest Manage Sci 74:1184–1196. https://doi.org/10.1002/ps.4624

    Article  CAS  Google Scholar 

  • Fu GM, Chen Y, Li RY, Yuan XQ, Liu CM, Li B, Wan Y (2017) Pathway and rate-limiting step of glyphosate degradation by Aspergillus oryzae A-F02. Prep Biochem Biotechnol 47(8):782–788

    Article  PubMed  CAS  Google Scholar 

  • Gill JPK, Sethi N, Mohan A (2016) Analysis of the glyphosate herbicide in water, soil and food using derivatising agents. Environ Chem Lett 15(1):85–100

    Article  CAS  Google Scholar 

  • Grandcoin A, Piel S, Baures E (2017) Amino methyl phosphonic acid (AMPA) in natural waters: its sources, behavior and environmental fate. Water Res 117:187–197

    Article  PubMed  CAS  Google Scholar 

  • Guilherme S, Santos MA, Gaivao I, Pacheco M (2014) DNA and chromosomal damage induced in fish (Anguilla anguilla L.) by aminomethylphosphonic acid (AMPA)—the major environmental breakdown product of glyphosate. Environl Sci Pollut Res 21(14):8730–8739

    Article  CAS  Google Scholar 

  • Hadi F, Mousavi A, Salmanian AH, Akbari Noghabi K (2012) Glyphosate tolerance in transgenic canola by a modified glyphosate oxidoreductase (gox) gene. Prog Biol Sci 2(1):50–58

    Google Scholar 

  • Hadi F, Mousavi A, Noghabi KA, Tabar HG, Salmanian AH (2013) New bacterial strain of the genus Ochrobactrum with glyphosate-degrading activity. J Environ Sci Heal B 48(3):208–213

    Article  CAS  Google Scholar 

  • Hanke I, Wittmer I, Bischofberger S, Stamm C, Singer H (2010) Relevance of urban glyphosate use for surface water quality. Chemosphere 81(3):422–429

    Article  PubMed  CAS  Google Scholar 

  • Haslam E (2014) The shikimate pathway: biosynthesis of natural products series. Elsevier, New York

    Google Scholar 

  • Hovejensen B, Mcsorley FR, Zechel DL (2011) Physiological role of phnP-specified phosphoribosyl cyclic phosphodiesterase in catabolism of organophosphonic acids by the carbon-phosphorus lyase pathway. J Am Chem Soc 133(10):3617–3624

    Article  CAS  Google Scholar 

  • Hove-Jensen B, Rosenkrantz TJ, Zechel DL, Willemoës M (2010) Accumulation of intermediates of the carbon-phosphorus lyase pathway for phosphonate degradation in phn mutants of Escherichia coli. J Bacteriol 192(1):370–374

    Article  PubMed  CAS  Google Scholar 

  • Hove-Jensen B, Zechel DL, Jochimsen B (2014) Utilization of glyphosate as phosphate source: biochemistry and genetics of bacterial carbon-phosphorus lyase. Microbiol Mol Biol Res 78(1):176–197

    Article  CAS  Google Scholar 

  • Jacob G, Garbow J, Hallas L, Kimack N, Kishore G, Schaefer J (1988) Metabolism of glyphosate in Pseudomonas sp. strain LBr. Appl Environ Microbiol 54(12):2953–2958

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kamat SS, Raushel FM (2013) The enzymatic conversion of phosphonates to phosphate by bacteria. Curr Opin Chem Biol 17(4):589–596

    Article  PubMed  CAS  Google Scholar 

  • Karigar CS, Rao SS (2011) Role of microbial enzymes in the bioremediation of pollutants: a review. Enzym Res 7:805187

    Google Scholar 

  • Kishore G, Jacob GS (1987) Degradation of glyphosate by Pseudomonas sp. PG2982 via a sarcosine intermediate. J Biol Chem 262(25):12164–12168

    PubMed  CAS  Google Scholar 

  • Klimek M, Lejczak B, Kafarski P, Forlani G (2001) Metabolism of the phosphonate herbicide glyphosate by a non-nitrate-utilizing strain of Penicillium chrysogenum. Pest Manag Sci 57(9):815–821

    Article  PubMed  CAS  Google Scholar 

  • Kryuchkova YV, Burygin GL, Gogoleva NE, Gogolev YV, Chernyshova MP, Makarov OE, Fedorov EE, Turkovskaya OV (2014) Isolation and characterization of a glyphosate-degrading rhizosphere strain, Enterobacter cloacae K7. Microbiol Res 169(1):99–105

    Article  PubMed  CAS  Google Scholar 

  • Krzyśko-Łupicka T, Orlik A (1997) The use of glyphosate as the sole source of phosphorus or carbon for the selection of soil-borne fungal strains capable to degrade this herbicide. Chemosphere 34(12):2601–2605

    Article  Google Scholar 

  • Krzyśko-Lupicka T, Strof W, Kubś K, Skorupa M, Wieczorek P, Lejczak B, Kafarski P (1997) The ability of soil-borne fungi to degrade organophosphonate carbon-to-phosphorus bonds. Appl Microbiol Biotechnol 48(4):549–552

    Article  PubMed  Google Scholar 

  • Kwiatkowska M, Huras B, Bukowska B (2014) The effect of metabolites and impurities of glyphosate on human erythrocytes (in vitro). Pestic Biochem Phys 109:34–43

    Article  CAS  Google Scholar 

  • Lerbs W, Stock M, Parthier B (1990) Physiological aspects of glyphosate degradation in Alcaligenes sp. strain GL. Arch Microbiol 153(2):146–150

    Article  CAS  Google Scholar 

  • Li H, Joshi SR, Jaisi DP (2016) Degradation and isotope source tracking of glyphosate and aminomethylphosphonic acid. J Agric Food Chem 64(3):529–538

    Article  PubMed  CAS  Google Scholar 

  • Liu CM, McLean P, Sookdeo C, Cannon F (1991) Degradation of the herbicide glyphosate by members of the family rhizobiaceae. Appl Environ Microbiol 57(6):1799–1804

    PubMed  PubMed Central  CAS  Google Scholar 

  • Liu J, Chen S, Ding J, Xiao Y, Han H, Zhong G (2015) Sugarcane bagasse as support for immobilization of Bacillus pumilus HZ-2 and its use in bioremediation of mesotrione-contaminated soils. Appl Microbiol Biotechnol 99(24):10839–10851

    Article  PubMed  CAS  Google Scholar 

  • Lund-HØie K, Friestad HO (1986) Photodegradation of the herbicide glyphosate in water. Bull Environ Contam Toxicol 36(1):723–729

    Article  PubMed  Google Scholar 

  • Lupi L, Miglioranza KS, Aparicio VC, Marino D, Bedmar F, Wunderlin DA (2015) Occurrence of glyphosate and AMPA in an agricultural watershed from the southeastern region of Argentina. Sci Total Environ 536:687–694

    Article  PubMed  CAS  Google Scholar 

  • Manassero A, Passalia C, Negro AC, Cassano AE, Zalazar CS (2010) Glyphosate degradation in water employing the H2O2/UVC process. Water Res 44(13):3875–3882

    Article  PubMed  CAS  Google Scholar 

  • McAuliffe KS, Hallas LE, Kulpa CF (1990) Glyphosate degradation by Agrobacterium radiobacter isolated from activated sludge. J Ind Microbiol Biotechnol 6(3):219–221

    CAS  Google Scholar 

  • Mercurio P, Flores F, Mueller JF, Carter S, Negri AP (2014) Glyphosate persistence in seawater. Mar Pollut Bull 85(2):385–390

    Article  PubMed  CAS  Google Scholar 

  • Mesnage R, Defarge N, Spiroux de Vendomois J, Seralini GE (2015) Potential toxic effects of glyphosate and its commercial formulations below regulatory limits. Food Chem Toxicol 84:133–153

    Article  PubMed  CAS  Google Scholar 

  • Metcalf WW, Wanner BL (1993) Evidence for a fourteen-gene, phnC to phnP locus for phosphonate metabolism in Escherichia coli. Gene 129(1):27–32

    Article  PubMed  CAS  Google Scholar 

  • Moore JK, Braymer HD, Larson AD (1983) Isolation of a Pseudomonas sp. which utilizes the phosphonate herbicide glyphosate. Appl Environ Microbiol 46(2):316–320

    PubMed  PubMed Central  CAS  Google Scholar 

  • Newton M, Horner LM, Cowell JE, White DE, Cole EC (1994) Dissipation of glyphosate and aminomethylphosphonic acid in north American forests. J Agric Food Chem 42(8):1795–1802

    Article  CAS  Google Scholar 

  • Niemann L, Sieke C, Pfeil R, Solecki R (2015) A critical review of glyphosate findings in human urine samples and comparison with the exposure of operators and consumers. J Verbr Lebensm 10(1):3–12

    Article  CAS  Google Scholar 

  • Norgaard T, Moldrup P, Ferré TPA, Olsen P, Rosenbom AE, de Jonge LW (2014) Leaching of glyphosate and aminomethylphosphonic acid from an agricultural field over a twelve-year period. Vadose Zone J 13(10):10–13

    Article  CAS  Google Scholar 

  • Obojska A, Lejczak B, Kubrak M (1999) Degradation of phosphonates by Streptomycete isolates. Appl Microbiol Biotechnol 51(6):872–876

    Article  PubMed  CAS  Google Scholar 

  • Obojska A, Ternan NG, Lejczak B, Kafarski P, McMullan G (2002) Organophosphonate utilization by the thermophile Geobacillus caldoxylosilyticus T20. Appl Environ Microbiol 68(4):2081–2084

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peñaloza-Vazquez A, Mena GL, Herrera-Estrella L, Bailey AM (1995) Cloning and sequencing of the genes involved in glyphosate utilization by Pseudomonas pseudomallei. Appl Environ Microbiol 61(2):538–543

    PubMed  PubMed Central  Google Scholar 

  • Pipke R, Amrhein N (1988a) Degradation of the phosphonate herbicide glyphosate by Arthrobacter atrocyaneus ATCC 13752. Appl Environ Microbiol 54(5):1293–1296

    PubMed  PubMed Central  CAS  Google Scholar 

  • Pipke R, Amrhein N (1988b) Isolation and characterization of a mutant of Arthrobacter sp. strain GLP-1 which utilizes the herbicide glyphosate as its sole source of phosphorus and nitrogen. Appl Environ Microbiol 54(11):2868–2870

    PubMed  PubMed Central  CAS  Google Scholar 

  • Pipke R, Amrhein N, Jacob GS, Schaefer J, Kishore GM (1987a) Metabolism of glyphosate in an Arthrobacter sp. GLP-1. FEBS J 165(2):267–273

    CAS  Google Scholar 

  • Pipke R, Schulz A, Amrhein N (1987b) Uptake of glyphosate by an Arthrobacter sp. Appl Environ Microbiol 53(5):974

    PubMed  PubMed Central  CAS  Google Scholar 

  • Quinn JP, Peden JM, Dick RE (1989) Carbon-phosphorus bond cleavage by Gram-positive and Gram-negative soil bacteria. Appl Microbiol Biotechnol 31(3):283–287

    Article  CAS  Google Scholar 

  • Santos-beneit F (2015) The Pho regulon: a huge regulatory network in bacteria. Front Micribiol 6:402

    Google Scholar 

  • Selvapandiyan A, Bhatnagar RK (1994) Isolation of a glyphosate-metabolising Pseudomonas: detection, partial purification and localisation of carbon-phosphorus lyase. Appl Microbiol Biotechnol 40(6):876–882

    Article  CAS  Google Scholar 

  • Sharma B, Dangi AK, Shukla P (2018) Contemporary enzyme based technologies for bioremediation: a review. J Environ Manage 210:10–22

  • Shinabarger DL, Braymer HD (1986) Glyphosate catabolism by Pseudomonas sp. strain PG2982. J Bacteriol 168(2):702–707

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shushkova T, Ermakova I, Leontievsky A (2010) Glyphosate bioavailability in soil. Biodegradation 21(3):403–410

    Article  PubMed  CAS  Google Scholar 

  • Sihtmäe M, Blinova I, Künnis-Beres K, Kanarbik L, Heinlaan M, Kahru A (2013) Ecotoxicological effects of different glyphosate formulations. Appl Soil Ecol 72:215–224

    Article  Google Scholar 

  • Sviridov A (2012) Enzyme systems of organophosphonate catabolism of soil bacteria Achromobacter sp. and Ochrobactrum anthropi GPK3. PhD thesis (in Russian). Pushchinoa 152:120–132

    Google Scholar 

  • Sviridov AV, Shushkova TV, Zelenkova NF, Vinokurova NG, Morgunov IG, Ermakova IT, Leontievsky AA (2012) Distribution of glyphosate and methylphosphonate catabolism systems in soil bacteria Ochrobactrum anthropi and Achromobacter sp. Appl Microbiol Biotechnol 93(2):787–796

    Article  PubMed  CAS  Google Scholar 

  • Sviridov A, Shushkova T, Ermakova I, Ivanova E, Leontievsky A (2014) Glyphosate: safety risks, biodegradation, and bioremediation. Current environmental issues and challenges. Springer, Dordrecht, pp 183–195

    Google Scholar 

  • Sviridov AV, Shushkova TV, Ermakova IT, Ivanova EV, Epiktetov DO, Leontievsky AA (2015) Microbial degradation of glyphosate herbicides (review). Appl Biochem Microbiol 51(2):188–195

    Article  CAS  Google Scholar 

  • Talbot HW, Johnson LM, Munnecke DM (1984) Glyphosate utilization by Pseudomonas sp. and Alcaligenes sp. isolated from environmental sources. Curr Microbiol 10(5):255–259

    Article  CAS  Google Scholar 

  • Van Stempvoort DR, Roy JW, Brown SJ, Bickerton G (2014) Residues of the herbicide glyphosate in riparian groundwater in urban catchments. Chemosphere 95:455–463

    Article  PubMed  CAS  Google Scholar 

  • Van Stempvoort DR, Spoelstra J, Senger ND, Brown SJ, Post R, Struger J (2016) Glyphosate residues in rural groundwater, Nottawasaga River watershed, Ontario, Canada. Pest Manag Sci 72(10):1862–1872

    Article  PubMed  CAS  Google Scholar 

  • Villarreal-Chiu JF, Quinn JP, McGrath JW (2012) The genes and enzymes of phosphonate metabolism by bacteria, and their distribution in the marine environment. Front Microbiol 3:19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wackett LP, Shames SL, Venditti CP, Walsh CT (1987) Bacterial carbon-phosphorus lyase: products, rates, and regulation of phosphonic and phosphinic acid metabolism. J Bacteriol 169(2):710–717

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Waiman CV, Avena MJ, Garrido M, Fernández Band B, Zanini GP (2012) A simple and rapid spectrophotometric method to quantify the herbicide glyphosate in aqueous media. Application to adsorption isotherms on soils and goethite. Geoderma 170:154–158

    Article  CAS  Google Scholar 

  • Wang S, Seiwert B, Kastner M, Miltner A, Schaffer A, Reemtsma T, Yang Q, Nowak KM (2016) (Bio)degradation of glyphosate in water-sediment microcosms—a stable isotope co-labeling approach. Water Res 99:91–100

    Article  PubMed  CAS  Google Scholar 

  • Xiao Y, Chen S, Gao Y, Hu W, Hu M, Zhong G (2015) Isolation of a novel beta-cypermethrin degrading strain Bacillus subtilis BSF01 and its biodegradation pathway. Appl Microbiol Biotechnol 99:2849–2859

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Ji F, Fan Z, He L (2011) Degradation of glyphosate in soil photocatalyzed by Fe3O4/SiO2/TiO2 under solar light. Int J Environ Res Public Health 8(4):1258–1270

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu XM, Yu T, Yin GH, Dong QL, An M, Wang HR, Ai CX (2015) Glyphosate biodegradation and potential soil bioremediation by Bacillus subtilis strain Bs-15. Genet Mol Res 14(4):14717–14730

    Article  PubMed  CAS  Google Scholar 

  • Zhan H, Wang H, Liao L, Feng Y, Fan X, Zhang L, Chen S (2018) Kinetics and novel degradation pathway of permethrin in Acinetobacter baumannii ZH-14. Front Microbiol 9:98

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Hu X, Luo J, Wu Z, Wang L, Li B, Wang Y, Sun G (2015) Degradation dynamics of glyphosate in different types of citrus orchard soils in China. Molecules 20(1):1161–1175

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This study was partially funded by grants from the National Natural Science Foundation of China (31401763), the National Key Project for Basic Research (2015CB150600), Guangdong Natural Science Funds for Distinguished Young Scholar (2015A030306038), the Science and Technology Planning Project of Guangdong Province (2016A020210106, 2017A010105008) and Pearl River S&T Nova Program of Guangzhou (201506010006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaohua Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, H., Feng, Y., Fan, X. et al. Recent advances in glyphosate biodegradation. Appl Microbiol Biotechnol 102, 5033–5043 (2018). https://doi.org/10.1007/s00253-018-9035-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-9035-0

Keywords

Navigation