Skip to main content
Log in

Structural and Morphological Properties of Hybrid Heterostructures Based on GaN Grown on a Compliant por-Si(111) Substrate

  • FABRICATION, TREATMENT, AND TESTING OF MATERIALS AND STRUCTURES
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The possibility of synthesizing integrated GaN/por-Si heterostructures by plasma-assisted molecular beam epitaxy without an A1N/Si buffer layer is demonstrated. The beneficial effect of the high-temperature nitridation of a silicon substrate before GaN growth on the crystal quality of the GaN/Si layers is shown. It is established that, to obtain two-dimensional GaN layers on Si(111), it is reasonable to use compliant por-Si substrates and low-temperature GaN seed layers with a 3D morphology synthesized by plasma-assisted molecular beam epitaxy at relatively low substrate temperatures under stoichiometric conditions and upon enrichment with nitrogen. In this case, a self-assembled array of GaN seed nanocolumns with a fairly uniform diameter distribution forms on the por-Si substrate surface. The basic GaN layers, in turn, should be grown at a high temperature under stoichiometric conditions upon enrichment with gallium, upon which the coalescence of nucleated GaN nanocolumns and growth of a continuous two-dimensional GaN layer are observed. The use of compliant Si substrates is a relevant approach for forming GaN-based semiconductor device heterostructures by plasma-assisted molecular beam epitaxy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. I. Roland, M. Gromovyi, Y. Zeng, M. El Kurdi, S. Sauvage, C. Brimont, T. Guillet, B. Gayral, F. Semond, J. Y. Duboz, M. de Micheli,  X. Checoury, and P. Boucaud, Sci. Rep. 6, 34191 (2016).

    Article  ADS  Google Scholar 

  2. K. Nishi, K. Takemasa, M. Sugawara, and Y. Arakawa, IEEE J. Sel. Top. Quantum. Electron. 23, 1 (2017).

    Article  Google Scholar 

  3. P. V. Seredin, D. L. Goloshchapov, A. S. Lenshin, A. M. Mizerov, and D. S. Zolotukhin, Phys. E (Amsterdam, Neth.) 104, 101 (2018).

  4. P. V. Seredin, A. S. Lenshin, D. S. Zolotukhin, I. N. Arsentyev, A. V. Zhabotinskiy, and D. N. Nikolaev, Phys. E (Amsterdam, Neth.) 97, 218 (2018).

  5. P. V. Seredin, A. S. Lenshin, D. S. Zolotukhin, I. N. Arsentyev, D. N. Nikolaev, and A. V. Zhabotinskiy, Phys. B: Condens. Matter 530, 30 (2018).

    Article  ADS  Google Scholar 

  6. A. S. Lenshin, P. V. Seredin, B. L. Agapov, D. A. Minakov, and V. M. Kashkarov, Mater. Sci. Semicond. Process 30, 25 (2015).

    Article  Google Scholar 

  7. A. S. Len’shin, V. M. Kashkarov, P. V. Seredin, B. L. Agapov, D. A. Minakov, V. N. Tsipenyuk, and E. P. Domashevskaya, Tech. Phys. 59, 224 (2014).

    Article  Google Scholar 

  8. V. M. Kashkarov, A. S. Len’shin, P. V. Seredin, B. L. Agapov, and V. N. Tsipenuk, J. Surf. Invest.: X-ray Synchrotr. Neutron Tech. 6, 776 (2012).

    Article  Google Scholar 

  9. R. J. Martín-Palma, L. Pascual, P. Herrero, and J. M. Martínez-Duart, Appl. Phys. Lett. 81, 25 (2002).

    Article  ADS  Google Scholar 

  10. P. V. Seredin, A. S. Lenshin, D. L. Goloshchapov, A. N. Lukin, I. N. Arsentyev, A. D. Bondarev, and I. S. Tarasov, Semiconductors 49, 915 (2015).

    Article  ADS  Google Scholar 

  11. P. V. Seredin, A. V. Glotov, E. P. Domashevskaya, I. N. Arsentyev, D. A. Vinokurov, A. L. Stankevich, and I. S. Tarasov, Semiconductors 44, 1106 (2010).

    Article  ADS  Google Scholar 

  12. P. V. Seredin, A. V. Glotov, V. E. Ternovaya, E. P. Domashevskaya, I. N. Arsentyev, D. A. Vinokurov, A. L. Stankevich, and I. S. Tarasov, Semiconductors 45, 481 (2011).

    Article  ADS  Google Scholar 

  13. P. V. Seredin, V. E. Ternovaya, A. V. Glotov, A. S. Len’shin, I. N. Arsent’ev, D. A. Vinokurov, I. S. Tarasov, H. Leiste, and T. Prutskij, Phys. Solid State 55, 2161 (2013).

    Article  ADS  Google Scholar 

  14. S. Adachi, Properties of Semiconductor Alloys: Group IV, III–V and II–VI Semiconductors, 1st ed. (Wiley, Chichester, UK, 2009). http://doi.wiley.com/10.1002/9780470744383

    Book  Google Scholar 

  15. I. Booker, L. Rahimzadeh Khoshroo, J. F. Woitok, V. Kaganer, C. Mauder, H. Behmenburg, J. Gruis, M. Heuken, H. Kalisch, and R. H. Jansen, Phys. Status Solidi C 7, 1787 (2010).

    Article  ADS  Google Scholar 

  16. R. W. Olesinski, N. Kanani, and G. J. Abbaschian, Bull. Alloy Phase Diagram 6, 362 (1985).

    Article  Google Scholar 

  17. T. Metzger, R. Höpler, E. Born, O. Ambacher, M. Stutzmann, R. Stömmer, M. Schuster, H. Göbel, S. Christiansen, M. Albrecht, and H. P. Strunk, Philos. Mag. A 77, 1013 (1998).

    Article  ADS  Google Scholar 

  18. S. K. Hong, T. Yao, B. J. Kim, S. Y. Yoon, and T. I. Kim, Appl. Phys. Lett. 77, 82 (2000).

    Article  ADS  Google Scholar 

  19. E. P. Domashevskaya, P. V. Seredin, A. N. Lukin, L. A. Bityutskaya, M. V. Grechkina, I. N. Arsentyev, D. A. Vinokurov, and I. S. Tarasov, Surf. Interface Anal. 38, 828 (2006).

    Article  Google Scholar 

  20. Y. Cordier, N. Baron, S. Chenot, P. Vennéguès, O. Tottereau, M. Leroux, F. Semond, and J. Massies, J. Cryst. Growth 311, 2002 (2009).

    Article  ADS  Google Scholar 

  21. A. Ubukata, K. Ikenaga, N. Akutsu, A. Yamaguchi, K. Matsumoto, T. Yamazaki, and T. Egawa, J. Cryst. Growth 298, 198 (2007).

    Article  ADS  Google Scholar 

  22. S. Raghavan and J. M. Redwing, J. Appl. Phys. 98, 023514 (2005).

    Article  ADS  Google Scholar 

  23. I. Vurgaftman and J. R. Meyer, J. Appl. Phys. 94, 3675 (2003).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We acknowledge the Karlsruhe Nano Micro Facility (KNMF, www.kit.edu/knmf), Forschungszentrum Karlsruhe for providing access to the equipment at their laboratories.

Funding

This work was supported by the Grant of the President of the Russian Federation MD-42.2019.2 and Russian Federation Government Regulation no. 211, contract no. 02.A03.21.0006.

The growth experiments were carried out in the framework of the state task of the Ministry of Education and Science of the Russian Federation no. 16.9789.2017 BCh.

The diagnostics of the integrated structures was supported by the Ministry of Education and Science of the Russian Federation, project no. 11.4718.2017/8.9 in the framework of the state task to higher schools in the field of scientific activity 2017–2019.

The study of controlling the morphology and composition of bulk and porous substrates was supported by the Ioffe Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. V. Seredin, A. M. Mizerov or I. N. Arsentyev.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seredin, P.V., Goloshchapov, D.L., Zolotukhin, D.S. et al. Structural and Morphological Properties of Hybrid Heterostructures Based on GaN Grown on a Compliant por-Si(111) Substrate. Semiconductors 53, 1120–1130 (2019). https://doi.org/10.1134/S1063782619080165

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782619080165

Keywords:

Navigation