Skip to main content
Log in

Preparation, properties and application of completely compensated Ge-on-GaAs films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We present and generalize the preparation conditions and properties of strongly compensated Ge films grown on semi-insulating GaAs(100) substrates by vacuum evaporation. The films are characterized using high-resolution X-ray diffraction (HRXD), atomic force (AFM) and Kelvin probe force microscopy (KPFM), Raman spectroscopy, electroreflectance, optical absorption and temperature-dependent transport measurements. HRXD shows that an ideally pseudomorphic growth of Ge films with good single crystal structure can be obtained by this growth technique. The film microstructure and transport properties are found to depend sensitively on the Ge deposition rate. Thin (~ 100 nm) Ge films grown at low rates exhibit rough, granular morphology (RMS up to 15 nm), high resistivity (up to 140 Ω·cm), low free charge carrier mobility (~ 50 cm2/V·s) and concentration (~ 1014–1015 cm−3) and activated conductivity with an anomalously large activation energy up to half the Ge bandgap. This insulating behavior is attributed to a completely compensated, disordered state arising from Ga and As impurity incorporation and large-scale potential fluctuations. Analysis suggests a two-dimensional percolative transport mechanism, consistent with the reduced film thickness and disorder-induced carrier localization. In contrast, films deposited at higher rates are smoother, more conductive, and exhibit weak temperature dependence of the resistivity, indicative of a more ordered state. These results provide insight into the interplay between disorder, carrier localization, and transport in heavily compensated semiconductors, and highlight the critical role of growth kinetics in determining the properties of Ge-on-GaAs heterostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2.
Fig. 3
Fig. 4
Fig. 5
Fig. 6.
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. W. Shockley, J. Bardeen, Phys. Rev. 77, 407 (1950)

    Article  ADS  Google Scholar 

  2. L.V. Keldysh, G.P. Proshko, Sov. Phys. Solid State 5, 2481 (1964)

    Google Scholar 

  3. H. Fritzsche, J. Non-Cryst, Solids 6, 49 (1971)

    Google Scholar 

  4. B. Pistoulet, F.M. Roche, S. Abdalla, Phys. Rev. B B 30, 5987 (1984)

    Article  ADS  Google Scholar 

  5. B.I. Shklovskii and A.L. Efros, Electronic Properties of Doped Semiconductors, Springer Series in Solid-State Science, Vol. 45 (Springer Verlag, Berlin) 1984, p. 387.

  6. B. Skinner, T. Chen, B.I. Shklovskii, Phys. Rev. Lett. 109, 176801 (2012)

    Article  ADS  Google Scholar 

  7. T. Chen, B.I. Shklovskii, Phys. Rev. B 87, 165119 (2013)

    Article  ADS  Google Scholar 

  8. Y. Huang, Y. He, B. Skinner, B.I. Shklovskii, Phys. Rev. B 105, 054206 (2022)

    Article  ADS  Google Scholar 

  9. V.F. Mitin, Yu.A. Tkhorik, E.F. Venger, Microelectronics J. 28, 617 (1997)

    Article  Google Scholar 

  10. V.F. Mitin, Appl. Phys. Lett. 92, 202111 (2008)

    Article  ADS  Google Scholar 

  11. V.F. Mitin, J. Appl. Phys. 107, 033720 (2010)

    Article  ADS  Google Scholar 

  12. V.F. Mitin, V.K. Lazarov, P.M. Lytvyn, P.J. Hasnip, V.V. Kholevchuk, L.A. Matveeva, EYu. Kolyadina, I.E. Kotenko, V.V. Mitin, E.F. Venger, Phys. Rev. B 84, 125316 (2011)

    Article  ADS  Google Scholar 

  13. V.F. Mitin, V.K. Lazarov, L. Lari, P.M. Lytvyn, V.V. Kholevchuk, L.A. Matveeva, V.V. Mitin, E.F. Venger Thin Solid Films 550, 715 (2014)

  14. G. G. Stoney, The tension of metallic films deposited by electrolysis, Proc. R. Soc. London, Ser. A, 82, 172 (1909)

  15. B.L. Freund, S. Suresh, Thin film materials; stress, defect formation and surface evolution (Cambridge UniversityPress, Cambridge, 2004)

    Book  Google Scholar 

  16. W.F. Tseng, J.E. Davey, A. Christou, B.R. Wilkins, Appl. Phys. Lett. 36, 435 (1980)

    Article  ADS  Google Scholar 

  17. K. Sarma, R. Dalby, K. Rose, O. Aina, W. Katz, N. Lewis, J. Appl. Phys. 56, 2703 (1984)

    Article  ADS  Google Scholar 

  18. M. Kawanaka, S. Jun’ichi, J. Cryst. Growth 95, 421 (1989).

  19. Yu. G. Sadof’ev, Pis’ma Zh. Tekh. Fiz. 19, 5 (1993).

  20. A. Leycuras, M.G. Lee, Appl. Phys. Lett. 65, 2296 (1994)

    Article  ADS  Google Scholar 

  21. B. Salazar-Hernández, M.A. Vidal, H. Navarro-Contreras, C. Vázquez-López, Thin Solid Films 352, 269 (1999)

    Article  ADS  Google Scholar 

  22. I. Shiota, K. Motoya, T. Ohmi, N. Miyamoto, J. Nishizawa, J. Electrochem. Soc. 124, 155 (1977)

    Article  ADS  Google Scholar 

  23. M. Bosi, G. Attolini, C. Ferrari, C. Frigeri, M. Calicchio, F. Rossi, K. Vad, A. Csik, Z. Zolnai, J. Cryst. Growth 318, 367 (2011)

    Article  ADS  Google Scholar 

  24. W.A. Harrison, E.A. Krant, J.R. Waldrop, R.W. Grant, Phys. Rev. B 18, 4402 (1978)

    Article  ADS  Google Scholar 

  25. M. Dahmen, U. Rau, M. Kawanaka, J. Sone, H.J. Werner, Appl. Phys. Lett. 62, 261 (1993)

    Article  ADS  Google Scholar 

  26. H. Kim, G. Ju, S.-H. Kim, K. Lee, M. Jeong, H.C. Koo, H.-J. Kim, Surf. Interfaces 26, 101390 (2021)

    Article  Google Scholar 

  27. R. Zallen, H. Scher, Phys. Rev. B 4, 4471 (1971)

    Article  ADS  Google Scholar 

  28. A.S. Skal, B.I. Shklovskii, A.L. Efros, Sov. Phys. JETP Lett. 17, 377 (1973)

    ADS  Google Scholar 

  29. B. I. Shklovskii and A. L. Efros, Sov. Phys. JETP 35, 610 (1972).

  30. B.I. Shklovskii, Sov. Phys. Semicond. 7, 77 (1973)

    Google Scholar 

  31. B.I. Shklovskii, Sov. Phys. JETP Lett. 14, 269 (1971)

    ADS  Google Scholar 

  32. A.S. Skal, B.I. Shklovskii, and A.L. Efros, Sov. Phys. Solid State 15, 961 (1973).

  33. W.C. Dunlap, Phys. Rev. 79, 286 (1950)

    Article  ADS  Google Scholar 

  34. F.J. Morin, J.P. Maita, Phys. Rev. 94, 1525 (1954)

    Article  ADS  Google Scholar 

  35. N. P. Garbar, L. A. Matveeva, V. F. Mitin, Yu. A. Tkhorik, R. Harman, Yu. M. Shvarts, Z. Stroubek, Sov. Phys. Semicond. 21, 245 (1987)

  36. L.A. Matveeva, Yu.A. Tkhorik, Poluprovodn. Tekh Mikroelektron. 16, 39 (1974)

    Google Scholar 

  37. N.F. Mott, E.A. Davis, Electronic processes in non-crystalline materials (Clarendon Press, Oxford, 1979)

    Google Scholar 

  38. A.Y. Shik, Sov. Phys. Semicond. 9, 574 (1975)

    Google Scholar 

  39. A.Y. Shik, Sov. Phys. Semicond. 9, 761 (1975)

    Google Scholar 

  40. C.J. Adkins, J. Phys. C 12, 3389 (1979)

    Article  ADS  Google Scholar 

  41. A.Y. Shik, Sov. Phys. Semicond. 17, 1422 (1983)

    Google Scholar 

  42. M.K. Sheinkman, A.Y. Shik, Sov. Phys. Semicond. 10, 128 (1976)

    Google Scholar 

  43. M. Nonnenmacher, M.P. O’Boyle, H.K. Wickramasinghe, Appl. Phys. Lett. 58, 2921 (1991)

    Article  ADS  Google Scholar 

  44. S. Hudlet, M. Saint Jean, B. Roulet, J. Berger, C. Guthmann, J. Appl. Phys., 77 3308 (1995)

  45. C. Baumgart, M. Helm, H. Schmidt, Phys. Rev. B 80, 085305 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

V.F. Mitin is responsible for fabrication of completely compensated Ge-on-GaAs structures, measuring resistance, magnetoresistance, and explaining the experimental results, and P.M. Lytvyn is responsible for the scanning probe microscopy research and the structural analysis of the samples.

Corresponding author

Correspondence to V. F. Mitin.

Ethics declarations

Conflict of interest

The authors have no conflicts to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitin, V.F., Lytvyn, P.M. Preparation, properties and application of completely compensated Ge-on-GaAs films. Appl. Phys. A 130, 397 (2024). https://doi.org/10.1007/s00339-024-07524-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07524-5

Keywords

Navigation