Skip to main content
Log in

Electrical properties of MOS capacitors formed by PEALD grown Al2O3 on silicon

  • Physics of Semiconductor Devices
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

In the present work, we have grown 2.83 nm thin Al2O3 films directly on pre-cleaned p-Si (100) substrate using precursor Trimethyl Aluminium (TMA) with substrate temperature of 300°C in a Plasma Enhanced Atomic Layer Deposition (PEALD) chamber. The MOS capacitors were fabricated by depositing Pt/Ti metal bilayer through shadow mask on Al2O3 high-k by electron beam evaporation system. The MOS devices were characterized to evaluate the electrical properties using a capacitance voltage (CV) set-up. The dielectric constant calculated through the CV analysis is 8.32 for Al2O3 resulting in the equivalent oxide thickness (EOT) of 1.32 nm. The flat-band shift of 0.3 V is observed in the CV curve. This slight positive shift in flat-band voltage is due to the presence of some negative trap charges in Pt/Ti/ALD-Al2O3/p-Si MOS capacitor. The low leakage current density of 3.08 × 10−10 A/cm2 is observed in the JV curve at 1 V. The Si/Al2O3 barrier height Φ B and the value of J FN are calculated to be 2.78 eV and 3.4 × 10−5 A/cm2 respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pi-chun Juan, Chuan-hsi Liu, Cheng-li Lin, Shin-chun Ju, Main-gwo Chen Ingram, Yin-ku Chang, and Jong-hong Lu, Jpn. J. Appl. Phys. 48, 05DA02 (2009).

    Article  Google Scholar 

  2. H. Garcial, S. Duefias, H. Castan, A. Gomezl, L. Bailon, K. Kukli, T. Hatanpaa, J. Aarik, A. Aidla, M. Ritala, and M. Leskelii, in Proceedings of the 2009 Spanish Conference on Electron Devices, Febr. 11–13, 2009, p. 223.

  3. H. Y. Yu, M. F. Li, B. J. Cho, C. C. Yeo, M. S. Joo, D.-L. Kwong, J. S. Pan, C. H. Ang, J. Z. Zheng, and S. Ramanathan, Appl. Phys. Lett. 81, 376 (2002).

    Article  ADS  Google Scholar 

  4. M. Liu, G. Hea, L. Q. Zhu, Q. Fang, G. H. Li, and L. D. Zhang, Appl. Surf. Sci. 252, 6206 (2006).

    Article  ADS  Google Scholar 

  5. Gang He, Zhaoqi Sun, Guang Li, and Lide Zhan, Crit. Rev. Solid State Mater. Sci. 37, 131 (2012).

    Article  ADS  Google Scholar 

  6. Chun Zhao, C. Z. Zhao, M. Werner, S. Taylor, and P. R. Chalker, Int. Scholarly Res. Network ISRN Nanotechnol. 2012, Article ID 689023 (2012).

  7. K. Y. Gao, F. Speck, K. Emtsev, Th. Seyller, and L. Ley, J. Appl. Phys. 102, 094503 (2007).

    Article  ADS  Google Scholar 

  8. Liu Yan-Ping, Lan-Wei, He Zhi-Wei, and Wang Yin-Yue, Chin. Phys. Lett. 23, 2236 (2006).

    Article  ADS  Google Scholar 

  9. J.-Y. Son, S.-W. Jeong, and K.-S. Kim, and Yonghan Roh, J. Korean Phys. Soc. 51, S238 (2007).

    Article  ADS  Google Scholar 

  10. J. C. Hackley, J. D. Demaree, and T. Gougousi, Mater. Res. Soc. Symp. Proc. 1073, 1073-H04–19 (2008).

    Article  Google Scholar 

  11. P. M. Tirmali, A. G. Khairnar, B. N. Joshi, and A. M. Mahajan, Solid State Electron. 62, 44 (2011).

    Article  ADS  Google Scholar 

  12. M. Sato, T. Aoyama, Y. Nara, and Y. Ohji, Jpn. J. Appl. Phys. 48, 04C002 (2009).

    Google Scholar 

  13. J. Lappalainen, H. L. Tuller, and V. Lantto, J. Electroceram. 13, 129 (2004).

    Article  Google Scholar 

  14. M.-G. Blanchin, B. Canut, Y. Lambert, V. S. Teodorescu, A. Baraǔ, and M. Zaharescu, J. Sol-Gel Sci. Technol. 47, 165 (2008).

    Article  Google Scholar 

  15. A. G. Khairnar and A. M. Mahajan, Bull. Mater. Sci. 36, 259 (2013).

    Article  Google Scholar 

  16. S. X. Lao, R. M. Martin, and J. P. Chang, J. Vac. Sci. Technol. A 23, 488 (2005).

    Article  ADS  Google Scholar 

  17. M. Ch.-H. Lu, G. M. T. Wong, M. D. Deal, W. Tsai, P. Majhi, Chi On Chui, M. R. Visokay, J. J. Chambers, L. Colombo, B. M. Clemens, and Y. Nish, IEEE Electron. Dev. Lett. 26–7, 445 (2005).

    ADS  Google Scholar 

  18. A. G. Khairnar and A. M. Mahajan, Solid State Sci. 15, 24 (2013).

    Article  ADS  Google Scholar 

  19. E. H. Oulachgar, C. Aktik, M. Scarlete, S. Dostie, R. Sowerby, and S. Gujrathi, Appl. Phys. Lett. 101, 084107 (2007).

    Google Scholar 

  20. H. J. Quah, K. Y. Cheong, Z. Hassan, and Z. Lockman, IEEE Trans. Electron. Dev. 58, 122 (2011).

    Article  ADS  Google Scholar 

  21. P. Laha, A. B. Panda, S. Dahiwale, K. Date, K. R. Patil, P. K. Barhai, A. K. Das, I. Banerjee, and S. K. Mahapatra, Thin Solid Films 519, 1530 (2010).

    Article  ADS  Google Scholar 

  22. K. Y. Cheong, J. H. Moon, H. J. Kim, W. Bahng, and Nam-Kyun Kim, J. Appl. Phys. 103, 084113 (2008).

    Article  ADS  Google Scholar 

  23. W. J. Zhu, Tso-Ping Ma, Takashi Tamagawa, J. Kim, and Y. Di, IEEE Electron. Dev. Lett. 23, 97 (2002).

    Article  ADS  Google Scholar 

  24. M. D. Groner, J. W. Elam, F. H. Fabreguette, and S. M. George, Thin Solid Films 413, 186 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Mahajan.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahajan, A.M., Khairnar, A.G. & Thibeault, B.J. Electrical properties of MOS capacitors formed by PEALD grown Al2O3 on silicon. Semiconductors 48, 497–500 (2014). https://doi.org/10.1134/S1063782614040204

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782614040204

Keywords

Navigation