Skip to main content
Log in

Study of electrical and micro-structural properties of high-κ gate dielectric stacks deposited using pulse laser deposition for MOS capacitor applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The electrical properties of hafnium oxide (HfO2) gate dielectric as a metal–oxide–semiconductor (MOS) capacitor structure deposited using pulse laser deposition (PLD) technique at optimum substrate temperatures in an oxygen ambient gas are investigated. The film thickness and microstructure are examined using ellipsometer and atomic force microscope (AFM), respectively to see the effect of substrate temperatures on the device properties. The electrical J–V, C–V characteristics of the dielectric films are investigated employing Al–HfO2–Si MOS capacitor structure. The important parameters like leakage current density, flat-band voltage (Vfb) and oxide-charge density (Qox) for MOS capacitors are extracted and investigated for optimum substrate temperature. Further, electrical studies of these MOS capacitors have been carried out by incorporating La2O3 into HfO2 to fabricate HfO2/La2O3 dielectric stacks at an optimized substrate temperature of 800 °C using a PLD deposition technique under oxygen ambient. These Al–HfO2–La2O3–Si dielectric stacks MOS capacitor structure are found to possess better electrical properties than that of HfO2 based MOS capacitors using the PLD deposition technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H. Wong, H. Iwai, Microelectron. Eng. 83, 1867 (2006)

    Article  Google Scholar 

  2. H. Wong, H. Iwai, Phys. World 18, 40 (2005)

    Google Scholar 

  3. T. Zimmermann, Y. Cao, D. Jena, H.G. Xing, Int. J. High Speed Electron. Syst. 19, 153 (2009)

    Article  Google Scholar 

  4. G.B. Alers, D.J. Werder, Y. Chabal, H.C. Lu, E.P. Gusev, E. Garfunkel, T. Gustafsson, R.S. Urdahl, Appl. Phys. Lett. 73, 1517 (1998)

    Article  Google Scholar 

  5. C.M. Tanner, Y.-C. Perng, C. Frewin, S.E. Saddow, J.P. Chang, Appl. Phys. Lett. 91, 203510 (2007)

    Article  Google Scholar 

  6. S. Chakraborty, M.K. Bera, S. Bhattacharya, C.K. Maiti, Microelectron. Eng. 81, 188 (2005)

    Article  Google Scholar 

  7. D. Zade, S. Sato, K. Kakushima, A. Srivastava, P. Ahmet, K. Tsutsui, A. Nishiyama, N. Sugii, K. Natori, T. Hattori, C.K. Sarkar, H. Iwai, Microelectron. Reliab. 51, 746 (2011)

    Article  Google Scholar 

  8. T. Ngai, W.J. Qi, R. Sharma, J. Fretwell, X. Chen, J.C. Lee, S. Banerjee, Appl. Phys. Lett. 76, 502 (2000)

    Article  Google Scholar 

  9. J. Zhu, Y.R. Li, Z.G. Liu, J. Phys. D Appl. Phys. 37, 2896 (2004)

    Article  Google Scholar 

  10. A. Srivastava, R. K. Nahar, V. Gupta, C. K. Sarkar, Proceedings of the 11th IEEE International Conference on Nanotechnology (Portland, Oregon, USA, 2011), p. 504

  11. R.K. Nahar, V. Singh, A. Sharma, J. Mater. Sci.: Mater. Electron. 18, 615 (2007)

    Google Scholar 

  12. A. Srivastava, R.K. Nahar, C.K. Sarkar, W.P. Singh, Y. Malhotra, Microelectron. Reliab. 51, 751 (2011)

    Article  Google Scholar 

  13. A. Srivastava, R.K. Nahar, C.K. Sarkar, J. Mater. Sci.: Mater. Electron. 22, 882 (2011)

    Google Scholar 

  14. P.M. Tirmali, A.G. Khairnar, B.N. Joshi, A.M. Mahajan, Solid State Electron. 62, 44 (2011)

    Article  Google Scholar 

  15. K.L. Ng, N. Zhan, C.W. Kok, M.C. Poon, H. Wong, Microelectron. Reliab. 43, 1289 (2003)

    Article  Google Scholar 

  16. J. Zhu, Z.G. Liu, Y.R. Li, J. Phys. D Appl. Phys. 38, 446 (2005)

    Article  Google Scholar 

  17. J. Zhu, Z.G. Liu, Appl. Phys. A 80, 1769 (2005)

    Article  Google Scholar 

  18. H.Y. Yu, J.F. Kang, C. Ren, J.D. Chen, Y.T. Hou, C. Shen, M.F. Li, D.S.H. Chan, K.L. Bera, C.H. Tung, D.-L. Kwong, IEEE Electron. Device Lett. 25, 70 (2004)

    Article  Google Scholar 

  19. H.F. Wolf, Semiconductors (Wiley, New York, 1971)

    Google Scholar 

  20. H. Wong, K.L. Ng, N. Zhan, M.C. Poon, C.W. Kok, J. Vac. Sci. Technol. B 22, 1094 (2004)

    Article  Google Scholar 

  21. S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981)

    Google Scholar 

  22. F.-C. Chiu, H.-W. Chou, J.Y.-M. Lee, J. Appl. Phys. 97, 103503 (2005)

    Article  Google Scholar 

  23. I. Horcas, R. Fernández, J.M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, A.M. Baro, Rev. Sci. Instrum. 78, 013705 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors (OM) is thankful to the Council of Scientific and Industrial Research (CSIR), New Delhi, India for financial assistance in term of award of Senior Research Fellowship (NET). The authors would also like to thank Prof. V. R. Rao, Electrical Engineering Department, Indian Institute of Technology, Bombay, for useful comments, suggestion and experimental support to do electrical characterization under the INUP project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Mangla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, A., Mangla, O., Nahar, R.K. et al. Study of electrical and micro-structural properties of high-κ gate dielectric stacks deposited using pulse laser deposition for MOS capacitor applications. J Mater Sci: Mater Electron 25, 3257–3263 (2014). https://doi.org/10.1007/s10854-014-2011-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2011-2

Keywords

Navigation