Skip to main content
Log in

Structure and dielectric properties of HfO2 films prepared by a sol–gel route

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Mono- and multilayer HfO2 sol–gel thin films have been deposited on silicon wafers by dip-coating technique using a solution based on hafnium ethoxide as precursor. The densification/crystallization process was achieved by classical annealing between 400 and 600 °C for 0.5 h (after drying at 100 °C). Systematic TEM studies were performed to observe the evolution of the thin film structure depending on the annealing temperature. The overall density of the films was determined from RBS spectrometry correlated with cross section (XTEM) thickness measurements. After annealing at 450 °C the films are amorphous with a nanoporous structure showing also some incipient crystallization. After annealing at 550 °C the films are totally crystallized. The HfO2 grains grow in colonies having the same crystalline orientation with respect to the film plane, including faceted nanopores. During annealing a nanometric SiO2 layer is formed at the interface with the silicon substrate; the thickness of this layer increases with the annealing temperature. Capacitive measurements allowed determining the value of the dielectric constant as 25 for four layer films, i.e. very close to the value for the bulk material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wang J, Li HP, Stevens R (1992) J Mat Sci 27:5397

    Article  CAS  Google Scholar 

  2. Haussa M, Pantisano L, Ragnarsson LA, Degrave R, Schram T, Purtois G, De Gendt S, Grosenken G, Heyns MM (2006) Mat Sci Eng R51:37

    Google Scholar 

  3. Bersuker G, Zeitzoff P, Brown G, Huff HR (2004) Mater Today 7(1):26

    CAS  Google Scholar 

  4. Brezesinski T, Smarsly B, Iimura K, Grosso D, Boissiere C, Amenitsch H, Antoinietti M, Sanchez C (2005) Small 1:889

    Article  CAS  Google Scholar 

  5. Supplit R, Husing N, Gross S, Bernstoff S, Puchberger M (2007) Eur J Inorg Chem 18:2797

    Article  Google Scholar 

  6. Villanueva-Ibanez M, Le Luyer C, Marty O, Mugnier J (2003) Opt Mater 24(1–2):51

    Article  CAS  Google Scholar 

  7. Villanueva-Ibanez M, Le Luyer C, Parola S, Marty O, Mugnier J (2003) Rev Adv Mater Sci 5:296

    CAS  Google Scholar 

  8. Boher P, Defraneaux C, Heinrich P, Wolsenholme J, Bender H (2004) Mat Sci Eng B109:64

    CAS  Google Scholar 

  9. Ferrari S, Modreanu M, Scarel G, Fancinelli M (2004) Thin Solid Films 450:124

    Article  CAS  Google Scholar 

  10. Hausmann DM, Gordon RG (2003) J Cryst Growth 249:251

    Article  CAS  Google Scholar 

  11. Kim YW, Roh Y, Yoo JB, Kim H (2007) Thin Solid Films 515:2984

    Article  CAS  Google Scholar 

  12. Essary C, Howard JM, Craciun V, Craciun D, Singh RK (2004) Thin Solid Films 450:111

    Article  CAS  Google Scholar 

  13. Wang SJ, Lim PC, Huan ACH, Liu CL, Chai JW, Chow SY, Pan JS, Li Q, Ong K (2003) App Phys Lett 82–13:2047

    Article  Google Scholar 

  14. Lee PF, Dai JY, Chen HLW, Choy CL (2004) Ceram Int 30:1267

    Article  CAS  Google Scholar 

  15. Fang Q, Zhang JY, Wang Z, Modreanu M, O’Sullivan BJ, Hurley PK, Leedham TL, Huywel D, Audier MA, Jiminez C, Senateur JP, Boyd JW (2004) Thin Solid Films 453–454:203

    Article  Google Scholar 

  16. Fang Q, Zhang JY, Wang ZM, He G, Yu J, Boyd JW (2003) Microel Eng 66:621

    Article  CAS  Google Scholar 

  17. He JQ, Teren A, Jia CL, Ehrhart P, Urban K, Waser R, Wang RH, (2004) J Cryst Growth 262:295

    Article  CAS  Google Scholar 

  18. Pereira L, Maques A, Aguas H, Nevedev N, Georgiev D, Fortunato E, Martinis R (2004) Mat Sci Eng B109:8917

    Google Scholar 

  19. Lee BH, Kang L, Nieh R, Qi WJ, Lee JC (2000) App Phys Lett 76–14:1926

    Article  Google Scholar 

  20. Gruger H, Kunath Ch, Kurth E, Sorge S, Pufe W, Pechstein T, (2004) Thin Solid Films 447–448:509

    Article  Google Scholar 

  21. He G, Fang Q, Liu M, Zhu LO, Zhang LD (2004) J Cryst Growth 268:155

    Article  CAS  Google Scholar 

  22. Nishide T, Honda S, Matsuura M, Ide M (2000) Thin Solid Films 37:61

    Article  Google Scholar 

  23. Shimada S, Sato T (2002) Carbon 40:2469

    Article  CAS  Google Scholar 

  24. Yu JJ, Fang Q, Zhang JY, Wang ZM, Boyd IW (2003) App Surf Sci 208–209:676

    Article  Google Scholar 

  25. Shimizu H, Asayama K, Kawai N, Nishide T (2004) Japan J Appl Phys 43:6992

    Article  CAS  Google Scholar 

  26. Shimizu H, Sato T, Konagai S, Ikeda M, Takahashi T, Nishide T (2007) Jpn J Appl Phys 46:4209

    Article  CAS  Google Scholar 

  27. Takahashi T, Nishide T (2004) J Ceram Soc Jpn Suppl 112-1 PacRim5 Special Issue 112(5):S234–S238

    Google Scholar 

  28. Nishide T, Meguro T, Suzuki S, Yabe T, (2005) J Ceram Soc Jpn 113:77

    Article  CAS  Google Scholar 

  29. Blanc P, Hovnanian N, Cot D, Larbot A (2000) J Sol-Gel Sci Technol 17:99

    Article  CAS  Google Scholar 

  30. Aoki Y, Kunitake T, Nakao A (2005) Chem Mater 17:450

    Article  CAS  Google Scholar 

  31. Goncalves RR, Carturan G, Zampedri L, Ferrari M, Montagna M, Chiasera A, Righini GC, Pelli S, Ribeiro SLJ, Messaddaq Y (2002) Appl Phys Lett 81–1:28

    Article  Google Scholar 

  32. Phani AR, Passacantando M, Santucci S (2007) J Non-Cryst Solids 353:663

    Article  CAS  Google Scholar 

  33. Tardy J, Erouel M, Deman AL, Gagnaire A, Teodorescu V, Blanchin MG, Canut B, Barau A, Zaharescu M, (2007) Microel Reliab 47:372

    Article  CAS  Google Scholar 

  34. Zaharescu M, Teodorescu VS, Gartner M, Blanchin MG, Barau A, Anastasescu M (2008) J Non-Cryst Solids 354:409

    Article  CAS  Google Scholar 

  35. Mayer M (1997) SIMNRA Users Guide, Report IPP 9/113, Max-Plank-Institut für Plasmaphysik. Garching, Germany

    Google Scholar 

  36. Robertson J (2005) Solid State Electron 49:283

    Article  CAS  Google Scholar 

  37. Barrett N, Renault O, Damlencaurt JF ,Maccherozi F, Fabrizioli M (2007) J Non-Cryst Solids 353:635

    Article  CAS  Google Scholar 

  38. Sze SM (1982) Physics of Semiconductor Devices, Wiley Editor

Download references

Acknowledgements

This work was realised in the frame of bilateral collaboration between Laboratoire PMCN, CNRS UMR 5586, University Lyon1 and the Institute of Physical Chemistry of the Romanian Academy. It was partially supported by the Romanian Academy Grant No. 41/2005 and PNCDI2 project No. 11061.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zaharescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blanchin, MG., Canut, B., Lambert, Y. et al. Structure and dielectric properties of HfO2 films prepared by a sol–gel route. J Sol-Gel Sci Technol 47, 165–172 (2008). https://doi.org/10.1007/s10971-008-1758-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-008-1758-4

Keywords

Navigation