Skip to main content
Log in

Contribution of Auger recombination to saturation of the light-current characteristics in high-power laser diodes (λ = 1.0–1.9 m m)

  • Physics of Semiconductor Devices
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Spectral and light-current characteristics of lasers based on the asymmetric separate-confinement heterostructures InGaAs/InGaAsAl/InP and InGaAs/GaAs/AlGaAs/GaAs were studied in the pulsed mode of lasing. It is shown that, at high levels of current pumping, the charge-carrier concentration in the active region of semiconductor lasers for the near-infrared optical region increases beyond the oscillation threshold; drastic saturation of the light-current characteristics is observed. Processes occurring in lasers as the charge-carrier concentration increases beyond the lasing threshold are studied theoretically. It is established that, at high pump levels, the rate of stimulated recombination decreases, the lifetime of charge carriers increases, and both the concentration of emitted photons and the quantum yield of stimulated radiation decrease. It is shown that variations in stimulated recombination, the decrease in the quantum efficiency, and saturation of the light-current characteristic in semiconductor lasers at high levels of current pumping are caused by the contribution of the nonradiative Auger recombination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. A. Vinokurov, V. A. Kapitonov, A. V. Lyutetskiĭ, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 41, 1003 (2007) [Semiconductors 41, 984 (2007)].

    Google Scholar 

  2. A. V. Lyutetskiĭ, K. S. Borshchev, A. D. Bondarev, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 41, 883 (2007) [Semiconductors 41, 860 (2007)].

    Google Scholar 

  3. S. O. Slipchenko, Z. N. Sokolova, N. A. Pikhtin, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 40, 1017 (2006) [Semiconductors 40, 990 (2006)].

    Google Scholar 

  4. D. A. Vinokurov, V. A. Kapitonov, A. V. Lyutetskiĭ, et al., Pis’ma Zh. Tekh. Fiz. 32(16), 47 (2006) [Tech. Phys. Lett. 32, 712 (2006)].

    Google Scholar 

  5. I. S. Tarasov, N. A. Pikhtin, S. O. Slipchenko, et al., Spectrochem. Acta A 66, 819 (2007).

    Article  ADS  Google Scholar 

  6. N. A. Pikhtin, S. O. Slipchenko, Z. N. Sokolova, et al., Electron. Lett. 40, 1413 (2004).

    Article  Google Scholar 

  7. S. O. Slipchenko, D. A. Vinokurov, N. A. Pikhtin, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 38, 1477 (2004) [Semiconductors 38, 1430 (2004)].

    Google Scholar 

  8. D. A. Vinokurov, S. A. Zorina, V. A. Kapitonov, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 39, 388 (2005) [Semiconductors 39, 370 (2005)].

    Google Scholar 

  9. E. G. Golikova, V. A. Kureshov, A. Yu. Leshko, et al., Pis’ma Zh. Tekh. Fiz. 28(3), 66 (2002) [Tech. Phys. Lett. 28, 113 (2002)].

    Google Scholar 

  10. A. V. Lyutetskiĭ, N. A. Pikhtin, S. O. Slipchenko, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 37, 1394 (2003) [Semiconductors 37, 1356 (2003)].

    Google Scholar 

  11. N. A. Gun’ko, V. B. Khalfin, Z. N. Sokolova, and G. G. Zegrya, J. Appl. Phys. 84, 547 (1998).

    Article  ADS  Google Scholar 

  12. N. A. Pikhtin, S. O. Slipchenko, Z. N. Sokolova, and I. S. Tarasov, Fiz. Tekh. Poluprovodn. (St. Petersburg) 38, 374 (2004) [Semiconductors 38, 360 (2004)].

    Google Scholar 

  13. K. Seeger, Semiconductor Physics (Springer, Wien, 1973; Mir, Moscow, 1977).

    Google Scholar 

  14. W. P. Dumke, M. R. Lorenz, and G. D. Pettit, Phys. Rev. B 1, 4668 (1970).

    Article  ADS  Google Scholar 

  15. B. L. Gel’mont, Z. N. Sokolova, and V. B. Khalfin, Fiz. Tekh. Poluprovodn. (Leningrad) 18, 1803 (1984) [Sov. Phys. Semicond. 18, 1128 (1984)].

    Google Scholar 

  16. N. A. Gun’ko, G. G. Zegrya, N. V. Zotova, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 31, 1396 (1997) [Semiconductors 31, 1204 (1997)].

    Google Scholar 

  17. S. Adachi, Physical Properties of III–V Semiconductor Compounds (Wiley, New York, 1992).

    Book  Google Scholar 

  18. V. I. Fistul’, Introduction to the Physics of Semiconductors (Vysshaya Shkola, Moscow, 1975) in Russian].

    Google Scholar 

  19. B. L. Gel’mont and Z. N. Sokolova, Fiz. Tekh. Poluprovodn. (Leningrad) 16, 1670 (1982) [Sov. Phys. Semicond. 16, 1067 (1982)].

    Google Scholar 

  20. D. Z. Garbuzov, V. V. Agaev, Z. N. Sokolova, et al., Fiz. Tekh. Poluprovodn. (Leningrad) 18, 1069 (1984) [Sov. Phys. Semicond. 18, 665 (1984)].

    Google Scholar 

  21. Z. N. Sokolova, D. I. Gurylev, N. A. Pikhtin, and I. S. Tarasov, in Proceedings of 10th International Symposium on Nanostrucrures: Physics and Technology (St. Petersburg, Russia, 2002), p. 252.

  22. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1995).

    Google Scholar 

  23. B. L. Gel’mont, Z. N. Sokolova, and V. B. Khalfin, Fiz. Tekh. Poluprovodn. (Leningrad) 17, 453 (1983) [Sov. Phys. Semicond. 17, 280 (1983)].

    Google Scholar 

  24. B. L. Gel’mont, Z. N. Sokolova, and V. B. Khalfin, Fiz. Tekh. Poluprovodn. (Leningrad) 18, 1803 (1984) [Sov. Phys. Semicond. 18, 1128 (1984)].

    Google Scholar 

  25. D. Z. Garbuzov, A. V. Ovchinnikov, N. A. Pikhtin, et al., Fiz. Tekh. Poluprovodn. (Leningrad) 25, 928 (1991) [Sov. Phys. Semicond. 25, 560 (1991)].

    Google Scholar 

  26. B. S. Ryvkin and E. A. Avrutin, J. Appl. Phys. 97,123103 (2005).

    Article  ADS  Google Scholar 

  27. B. S. Ryvkin and E. A. Avrutin, Electron. Lett. 42, 1283 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.V. Lyutetskiĭ, K.S. Borshchev, N.A. Pikhtin, S.O. Slipchenko, Z.N. Sokolova, I.S. Tarasov, 2008, published in Fizika i Tekhnika Poluprovodnikov, 2008, Vol. 42, No. 1, pp. 106–112.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lyutetskiĭ, A.V., Borshchev, K.S., Pikhtin, N.A. et al. Contribution of Auger recombination to saturation of the light-current characteristics in high-power laser diodes (λ = 1.0–1.9 m m). Semiconductors 42, 104–111 (2008). https://doi.org/10.1134/S1063782608010156

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782608010156

PACS numbers

Navigation