Skip to main content
Log in

Si and Ge nanocluster formation in silica matrix

  • The 8th International Workshop on Beam Injection Assessment of Microstructures in Semiconductors, June 11–14, 2006, St. Petersburg, Russia
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

High resolution transmission electron microscopy, scanning transmission electron microscopy, and cathodoluminescence have been used to investigate Si and Ge cluster formation in amorphous silicon-dioxide layers. Commonly, cathodoluminescence emission spectra of pure SiO2 are identified with particular defect centers within the atomic network of silica including the nonbridging oxygen hole center associated with the red luminescence at 650 nm (1.9 eV) and the oxygen deficient centers with the blue (460 nm; 2.7 eV) and ultraviolet band (295 nm; 4.2 eV). In Ge+ ion-implanted SiO2, an additional violet emission band appears at 410 nm (3.1 eV). The strong increase of this violet luminescence after thermal annealing is associated with formation of low-dimension Ge aggregates such as dimers, trimers, and higher formations, further growing to Ge nanoclusters. On the other hand, pure silica layers were modified by heavy electron beam irradiation (5 keV; 2.7 A/cm2), leading to electronic as well as thermal dissociation of oxygen and the appearance of under-stoichiometric SiOx. This SiOx will undergo a phase separation and we observe Si cluster formation with a most probable cluster diameter of 4 nm. Such largely extended Si clusters will diminish the SiO2-related luminescence and Si-crystal-related luminescence in the near IR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology (Wiley, New York, 1982).

    Google Scholar 

  2. Silica Glass and Its Application, Ed. by I. Fanderlik (Elsevier, Amsterdam, 1991).

    Google Scholar 

  3. R. Kashyap, Fiber Bragg Gratings (Academic, New York, 1999).

    Google Scholar 

  4. D. Kovalev, H. Heckler, G. Polisski, and F. Koch, Phys. Status Solidi B 215, 871 (1999).

    Article  Google Scholar 

  5. S. Takeoka, M. Fujii, S. Hayashi, and K. Yamamoto, Phys. Rev. B 58, 792 (1998).

    Article  ADS  Google Scholar 

  6. V. I. Klimov, J. Phys. Chem. B 104, 6112 (2000).

    Article  Google Scholar 

  7. H.-J. Fitting, T. Barfels, A. N. Trukhin, et al., J. Non-Cryst. Solids 303, 218 (2002).

    Article  ADS  Google Scholar 

  8. S. Agnello, R. Boscaino, M. Cannas, et al., Phys. Rev. B 67, 033 202 (2003).

  9. B. Schmidt, Preparation of SiO 2 :Ge Layers (Research Center Rossendorf, Germany, 1997); Preparation of SiO 2 :Si and SiO 2 :O Layers (Research Center Rossendorf, Germany, 2000).

    Google Scholar 

  10. H.-J. Fitting, T. Barfels, A. N. Trukhin, and B. Schmidt, J. Non-Cryst. Solids 279, 51 (2001).

    Article  ADS  Google Scholar 

  11. L. Rebohle, J. von Borany, H. Fröb, and W. Skorupa, Appl. Phys. B 71, 131 (2000).

    Article  ADS  Google Scholar 

  12. A. N. Trukhin, H.-J. Fitting, T. Barfels, and A. von Czarnowski, J. Non-Cryst. Solids 260, 132 (1999).

    Article  ADS  Google Scholar 

  13. H.-J. Fitting, T. Ziems, Roushdey Salh, et al., J. Non-Cryst. Solids 351, 2251 (2005).

    Article  ADS  Google Scholar 

  14. M. A. Stevens Kalceff, Phys. Rev. B 57, 5674 (1998).

    Article  ADS  Google Scholar 

  15. E. V. Kolesnikova, A. A. Sitnikova, V. I. Sokolov, and M. Zamoryanskaya, Solid State Phenom. 108–109, 729 (2005).

    Article  Google Scholar 

  16. L. A. Bakaleinikov, M. V. Zamoryanskaya, E. V. Kolesnikova, et al., Phys. Solid State 46, 1018 (2004).

    Article  ADS  Google Scholar 

  17. Roushdey Salh, A. von Czarnowski, M. V. Zamoryanskaya, et al., Phys. Status Solidi A 203, 2049 (2006), DOI 10.1002/pssa.200521443.

    Article  ADS  Google Scholar 

  18. K. Imakita, M. Fujii, Y. Yamaguchi, and S. Hayashi, Phys. Rev. B 71, 115440 (2005).

    Google Scholar 

  19. S. M. Prokes, W. E. Carlos, S. Veprek, and C. Ossadnik, Phys. Rev. B 58, 15632 (1998).

    Google Scholar 

  20. A. R. Wilkinson and R. G. Elliman, J. Appl. Phys. 96, 4018 (2004).

    Article  ADS  Google Scholar 

  21. G. Ledoux, J. Gong, F. Huisken, et al., Appl. Phys. Lett. 80, 4834 (2002).

    Article  ADS  Google Scholar 

  22. F. Iacona, G. Franzo, and C. Spinella, J. Appl. Phys. 87, 1295 (2000).

    Article  ADS  Google Scholar 

  23. M. Zacharias, J. Heitmann, R. Scholz, et al., Appl. Phys. Lett. 80, 661 (2002).

    Article  ADS  Google Scholar 

  24. L. X. Yi, J. Heitmann, R. Scholz, and M. Zacharias, J. Phys.: Condens. Mater 15, S2887 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salh, R., Fitting, L., Kolesnikova, E.V. et al. Si and Ge nanocluster formation in silica matrix. Semiconductors 41, 381–386 (2007). https://doi.org/10.1134/S1063782607040033

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782607040033

PACS numbers

Navigation