Skip to main content
Log in

Formation of silicon nanocrystals in Si—SiO2α-Si—SiO2 heterostructures during high-temperature annealing: Experiment and simulation

  • Nanotechnologies in Optics and Electronics
  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

Experiments and simulations are performed to study the formation of silicon nanocrystals (Si-NCs) in multilayer structures with alternating ultrathin layers of SiO2 and amorphous hydrogenized silicon (α-Si:H) during high-temperature annealing. The effect of annealing on the transformation of the structure of the α-Si:H layers is studied by methods of high-resolution transmission electron microscopy, Raman spectroscopy, and photoluminescence spectroscopy. The conditions and kinetics of Si-NC formation are analyzed by the Monte Carlo technique. The type of the resultant crystalline silicon clusters is found to depend on the thickness and porosity of the original amorphous silicon layer located between SiO2 layers. It is shown that an increase in the thickness of the α-Si layer in the case of low porosity leads to the formation of a percolation silicon cluster instead of individual Si nanocrystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Silicon Nanocrystals: Fundamentals, Synthesis and Applications (Wiley-VCH, Weinheim, 2010).

  2. M. Roussel, E. Talbot, F. Gourbilleau, P. Pareige, “Atomic Characterization of Si Nano-Clusters Embedded in SiO2 by Atom Probe Tomography,” Nanoscale Res. Lett. 6 (1), 1–8 (2011).

    Google Scholar 

  3. T. V. Torchynska, A. V. Hernandez, Y. Matsumoto, et al., “Photoluminescence and Structure Investigations of Si Nano-Crystals in Amorphous Silicon Matrix,” J. Non-Cryst. Solids 352 (9–20), 1188–1191 (2006).

    Article  ADS  Google Scholar 

  4. L. Pavesi, L. D. Negro, C. Mazzoleni, et al., “Optical Gain in Silicon Nanocrystals,” Nature 408 (6811), 440–444 (2000).

    Article  ADS  Google Scholar 

  5. T. Z. Lu, M. Alexe, R. Scholz, et al., “Si Nanocrystal Based Memories: Effect of the Nanocrystal Density,” J. Appl. Phys. 100 (1), 014310 (2006).

    Article  ADS  Google Scholar 

  6. C. Y. Ng, T. P. Chen, L. Ding, et al., “Static Dielectric Constant of Isolated Silicon Nanocrystals Embedded in a SiO2 Thin Film,” Appl. Phys. Lett. 88 (6), 063103 (2006).

    Article  ADS  Google Scholar 

  7. J. S. Lee, S. Lee, T. W. Noh, “Resistive Switching Phenomena: A Review of Statistical Physics Approaches,” Appl. Phys. Rev. 2 (3), 031303 (2015).

    Article  ADS  Google Scholar 

  8. Yu. V. Genze, L. I. Shchepina, I. Ya. Shchepin, et al., “Electrical Properties of Lif-Based Thin Films with Gold and Copper Nanoclusters,” Izv. Ross. Akad. Nauk, Ser. Fiz. 79 (2), 217–220 (2015).

    Google Scholar 

  9. A. E. Berdnikov, V. N. Gusev, A. A. Mironenko, et al., “Effect of Conductivity Switching in MIS Structures with Si-Based Dielectrics Obtained by the Plasma-Enhanced Chemical Vapor Deposition,” Fiz. Tekhn. Polupr. 47 (5), 626–632 (2013).

    Google Scholar 

  10. A. A. Gismatilin and G. N. Kamaev, “Electrophysical Properties of Si/SiO2 Nanostructures Fabricated by Direct Coupling,” Pis’ma v Zh. Tekh. Fiz. 42 (11), 73–81 (2016) [Techn. Phys. Let. 42 (6), 588–591 (2016)].

    Google Scholar 

  11. S. Oda, S. Y. Huang, M. A. Salem, et al., “Charge Storage and Electron/Light Emission Properties of Silicon Nanocrystals,” Physica E. Low-Dim. Syst. Nanostruct. 38 (1/2), 59–63 (2007).

    Article  ADS  Google Scholar 

  12. G. A. Kachurin, S. G. Yanovskaya, M.-O. Ruault, et al., “The Influence of Irradiation and Subsequent Annealing on Si Nanocrystals Formed in SiO2 Layers,” Fiz. Tekhn. Polupr. 34 (8), 1004–1009 (2000) [Semiconductors 34 (8), 965–9709 (2000)].

    Google Scholar 

  13. V. Beyer, J. von Borany, K. H. Heinig, “Dissociation of Si+ Ion Implanted and As-Grown Thin SiO2 Layers during Annealing in Ultra-Pure Neutral Ambient by Emanation of SiO,” J. Appl. Phys. 101 (5), 053516 (2007).

    Article  ADS  Google Scholar 

  14. S. Cheylan, R. G. Elliman, K. Gaff, A. Durandet, “Luminescence from Si Nanocrystals in Silica Deposited by Helicon Activated Reactive Evaporation,” Appl. Phys. Lett. 78 (12), 1670–1672 (2001).

    Article  ADS  Google Scholar 

  15. A. N. Karpov, D. V. Marin, V. A. Volodin, et al., “SiO x Layer Formation During Plasma Sputtering of Si and SiO2 Targets,” Fiz. Tekhn. Polupr. 42 (6), 747–752 (2008) [Semiconductors 42 (6), 731–736 (2008)].

    Google Scholar 

  16. N. Daldosso, G. Das, S. Larcheri, et al., “Silicon Nanocrystal Formation in Annealed Silicon-Rich Silicon Oxide Films Prepared by Plasma Enhanced Chemical Vapor Deposition,” J. Appl. Phys. 101 (11), 113510 (2007).

    Article  ADS  Google Scholar 

  17. D. Comedi, O. H. Y. Zalloum, E. A. Irving, et al., “X-ray-Diffraction Study of Crystalline Si Nanocluster Formation in Annealed Silicon-Rich Silicon Oxides,” J. Appl. Phys. 99 (2), 023518 (2006).

    Article  ADS  Google Scholar 

  18. M. Zacharias, J. Heitmann, R. Scholz, et al., “Size-Controlled Highly Luminescent Silicon Nanocrystals: A SiO/SiO2 Superlattice Approach,” Appl. Phys. Lett. 80 (4), 661–663 (2002).

    Article  ADS  Google Scholar 

  19. L. Tsybeskov, K. D. Hirschman, S. P. Duttagupta, et al., “Nanocrystalline-Silicon Super-Lattice Produced by Controlled Recrystallization,” Appl. Phys. Lett. 72 (1), 43–45 (1998).

    Article  ADS  Google Scholar 

  20. F. Gourbilleau, X. Portier, C. Ternon, et al., “Si-Rich/SiO2 Nanostructured Multilayers by Reactive Magnetron Sputtering,” Appl. Phys. Lett. 78 (20), 3058–3060 (2001).

    Article  ADS  Google Scholar 

  21. B. T. Sullivan, D. J. Lockwood, H. J. Labbé, Z.-H. Lu, “Photoluminescence in Amorphous Si/SiO2 Superlattices Fabricated by Magnetron Sputtering,” Appl. Phys. Lett. 69 (21), 3149–3151 (1996).

    Article  ADS  Google Scholar 

  22. G. F. Grom, D. J. Lockwood, J. P. McCaffrey, et al., “Ordering and Self-Organization in Nanocrystalline Silicon,” Nature 407 (6802), 358–361 (2000).

    Article  ADS  Google Scholar 

  23. G. A. Kachurin, S. G. Cherkova, D. V. Marin, et al., “Action of Fast Heavy Ions on Si/SiO2 Multilayer Heterostructures,” Fiz. Tekhn. Polupr. 47 (3), 334–339 (2013).

    Google Scholar 

  24. I. G. Neizvestniy, V. A. Volodin, A. A. Gismatulin, et al., “Formation of Si Nanocrystals in SiO x , SiO x :C:H Films and Si/SiO2 Multilayer Nano-Heterostructures by Pulse Laser Treatments,” Proc. SPIE 9440, 94400F (2014).

    Article  Google Scholar 

  25. T. A. Kirichenko, D. Yu, S. K. Banerjee, G. S. Hwang, “Silicon Interstitials at Si/SiO2 Interfaces: Density Functional Calculations,” Phys. Rev. B 72, (3), 035345 (2005).

    Article  ADS  Google Scholar 

  26. A. Korkin, J. C. Greer, G. Bersuker, et al., “Computational Design of Si/SiO2 Interfaces: Stress and Strain on the Atomic Scale,” Phys. Rev. B 73 (16), 165312 (2006).

    Article  ADS  Google Scholar 

  27. T. Müller, K.-H. Heinig, W. Möller, “Nanocrystal Formation in Si Implanted thin SiO2 Layers under the Influence of an Absorbing Interface,” Mater. Sci. Eng. B 101 (1/3), 49–54 (2003).

    Article  Google Scholar 

  28. D. Yu, S. Lee, G. S. Hwang, “On the Origin of Si Nanocrystal Formation in a Si Suboxide Matrix,” J.Appl. Phys. 102 (8), 084309 (2007).

    Article  ADS  Google Scholar 

  29. E. A. Mikhantiev, I. G. Neizvestny, S. V. Usenkov, N. L. Shwartz, “Silicon Monoxide Role in Silicon Nanocluster Formation during Si-Rich Oxide Layer Annealing — Monte Carlo Simulation,” Comput. Mater. Sci. 90, 99–105 (2014).

    Article  Google Scholar 

  30. D. Tsoukalas, C. Tsamis, P. Normand, “Diffusivity Measurements of Silicon in Silicon Dioxide Layers using Isotopically Pure Material,” J. Appl. Phys. 89 (12), 7809–7813 (2001).

    Article  ADS  Google Scholar 

  31. Y. Tu, J. Tersoff, “Structure and Energetics of the Si-SiO2 Interface,” Phys. Rev. Lett. 84 (19), 4393–4396 (2000).

    Article  ADS  Google Scholar 

  32. A. Bongiorno, A. Pasquarello, “Multiscale Modeling of Oxygen Diffusion Through the Oxide during Silicon Oxidation,” Phys. Rev. B 70 (19), 195312 (2004).

  33. S. N. Averkin, K. A. Valiev, A. V. Myagon’kikh, et al., “Development of Low-Temperature Plasma-Enhanced Chemical Processes and a Series of Plasma Setups for Micro- and Nanotechnologies,” Tr. FTIAN 18, 121–137 (2005).

    Google Scholar 

  34. A. Kh. Antonenko, V. A. Volodin, M. D. Efremov, et al., “Oxidation Kinetics of a Silicon Surface in a Plasma of Oxygen with Inert Gases,” Avtometriya 47 (5), 52–58 (2011) [Optoelectron., Instrum. Data Process. 47 (5), 459–464 (2011)].

    Google Scholar 

  35. M. H. Brodsky, M. A. Frisch, J. F. Ziegler, W. A. Lanford, “Quantitative Analysis of Hydrogen in Glow Discharge Amorphous Silicon,” Appl. Phys. Lett. 30 (11), 561–563 (1977).

    Article  ADS  Google Scholar 

  36. K. Chopra and S. Das, Thin Film Solar Cells (Plenum, New York, 1983).

    Book  Google Scholar 

  37. Polycrystalline and Amorphous Thin Films and Devices (Academic Press, 1980).

  38. G. N. Kamaev, M. D. Efremov, A. Kh. Antonenko, et al., “Formation and Properties of Si/SiO2 Nanoperiodic Multilayer Structures Obtained in an Inductive Plasmochemical Reactor,” Vestn. NGU, Ser. Fiz. 6 (4), 104–115 (2011).

    Google Scholar 

  39. A. V. Zverev, C. Y. Zinchenko, N. L. Shwartz, and Z. S, Yanovitskaja, “A Monte Carlo Simulation of the Processes of Nanostructures Growth: The Time-Scale Event-Scheduling Algorithm,” Ross. Tekhnol. 4 (3/4), 103–111 (2009) [Nanotechnologies in Russia, No. 4, 215–224 (2009)].

    Google Scholar 

  40. A. N. Karpov, A. V. Zverev, A. G. Nastov’yak, et al., “Monte Carlo Lattice Model for Studying Nanostructure Formation Processes,” Vych. Metody Program. 15 (3), 388–399 (2014).

    Google Scholar 

  41. M. Zacharias, P. Streitenberger, “Crystallization of Amorphous Superlattices in the Limit of Ultrathin Films with Oxide Interfaces,” Phys. Rev. B 62 (12), 8391–8396 (2000).

    Article  ADS  Google Scholar 

  42. S. G. Cherkova, G. A. Kachurin, V. A. Volodin, et al., “Phase Separation as a Basis for the Formation of Light- Emitting Silicon Nanoclusters in SiO x Films Irradiated with Swift Heavy Ions,” Avtometriya 50 (3), 93–100 (2014) [Optoelectron., Instrum. Data Process. 50 (3), 292–297 (2014)].

    Google Scholar 

  43. A. V. Ershov, I. A. Chugrov, D. I. Tetelbaum, et al., “Thermal Evolution of the Morphology, Structure, and Optical Properties of Multilayer Nanoperiodic Systems Obtained by Means of Vacuum Evaporation of SiO and SiO2,” Fiz. Tekhn. Polupr. 47 (4), 460–465 (2013).

    Google Scholar 

  44. V. A. Volodin and V. A. Sachkov, “Improved Model of Localization of Optical Phonons in Silicon Nanocrystals,” Zh. Eksp. Teor. Fiz. 143 (1), 100–108 (2013).

    Google Scholar 

  45. V. Vinciguerra, G. Franzo, F. Priolo, et al., “Quantum Confinement and Recombination Dynamics in Silicon Nanocrystals Embedded in Si/SiO2 Superlattices,” J. Appl. Phys. 87 (11), 8165–8173 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Usenkov.

Additional information

Original Russian Text © I.G. Neizvestny, V.A. Volodin, G.N. Kamaev, S.G. Cherkova, S.V. Usenkov, N.L. Shwartz, 2016, published in Avtometriya, 2016, Vol. 52, No. 5, pp. 84–96.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neizvestny, I.G., Volodin, V.A., Kamaev, G.N. et al. Formation of silicon nanocrystals in Si—SiO2α-Si—SiO2 heterostructures during high-temperature annealing: Experiment and simulation. Optoelectron.Instrument.Proc. 52, 486–495 (2016). https://doi.org/10.3103/S8756699016050101

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699016050101

Keywords

Navigation