Skip to main content

Advertisement

Log in

Growth of endotaxial Ge nanocrystals in Si(100) matrix via low-energy ion implantation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Embedded structures in a crystalline substrate, endotaxial structures, play a major role in thermoelectric and optoelectronic applications. Here, we have fabricated Ge nanostructures inside Si(100) matrix via low-energy Ge+ ion implantation. Thermally grown SiO2 layer over the Si substrate has been used as a protective coating to avoid low-energy sputtering of the Si surface. 300 keV Ge ions are implanted into Si(100) matrix at two different fluences, 1 × 1015 and 5 × 1015 ions/cm2. After annealing the as-implanted specimens at 800 °C under the inert atmosphere for 1 h, the growth of Ge nanoclusters has been studied by Raman spectroscopy. Endotaxial nature of the Ge nanocrystals has been studied using cross-sectional high-resolution TEM. The compatibility between Ge and Si at the nanocrystal/matrix interface has been discussed in detail using high-resolution phase-contrast imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. X.L. Wu, L.Y. Jiang, F.F. Cao, Y.G. Guo, L.J. Wan, LiFePO4 nanoparticles embedded in a nanoporous carbon matrix: superior cathode material for electrochemical energy-storage devices. Adv. Mater. 21(25–26), 2710–2714 (2009). https://doi.org/10.1002/adma.200802998

    Article  Google Scholar 

  2. C. Zhu, X. Mu, P.A. van Aken, Y. Yu, J. Maier, Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. Angew. Chem. Int. Ed 53(8), 2152–2156 (2014). https://doi.org/10.1002/ange.201308354

    Article  Google Scholar 

  3. N.C. Sharma, S.V. Sahi, S. Nath, J.G. Parsons, J.L. Gardea-Torresde, T. Pal, Synthesis of plant-mediated gold nanoparticles and catalytic role of biomatrix-embedded nanomaterials. Environ. Sci. Technol 41(14), 5137–5142 (2007). https://doi.org/10.1021/es062929a

    Article  ADS  Google Scholar 

  4. Y.G. Lv, Z.S. Deng, J. Liu, 3-D numerical study on the induced heating effects of embedded micro/nanoparticles on human body subject to external medical electromagnetic field. IEEE Trans. Nanobiosci 4(4), 284–294 (2005). https://doi.org/10.1109/TNB.2005.859549

    Article  Google Scholar 

  5. V.A. Moshnikov, I. Gracheva, A.S. Lenshin, Y.M. Spivak, M.G. Anchkov, V.V. Kuznetsov, J.M. Olchowik, Porous silicon with embedded metal oxides for gas sensing applications. J. Non-Cryst Solids 358(3), 590–595 (2012). https://doi.org/10.1016/j.jnoncrysol.2011.10.017

    Article  ADS  Google Scholar 

  6. S. Mirabella, S. Cosentino, A. Gentile, G. Nicotra, N. Piluso, L.V. Mercaldo, A. Terrasi, Matrix role in Ge nanoclusters embedded in Si3N4 or SiO2. Appl. Phys. Lett. 101(1), 011911 (2012). https://doi.org/10.1063/1.4734395

    Article  ADS  Google Scholar 

  7. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, D.F. Priolo, Optical gain in silicon nanocrystals. Nature 408(6811), 440 (2000). https://doi.org/10.1038/35044012

    Article  ADS  Google Scholar 

  8. H. Rinnert, M. Vergnat, A. Burneau, Evidence of light-emitting amorphous silicon clusters confined in a silicon oxide matrix. J. Appl. Phys. 89(1), 237–243 (2001). https://doi.org/10.1063/1.1330557

    Article  ADS  Google Scholar 

  9. S. Banerjee, S. Nozaki, H. Morisaki, Coulomb-blockade effect observed at room temperature in Ge nanocrystalline films deposited by the cluster-beam evaporation technique. Appl. Phys. Lett. 76(4), 445–447 (2000). https://doi.org/10.1063/1.125782

    Article  ADS  Google Scholar 

  10. R.R. Juluri, A. Rath, A. Ghosh, A. Bhukta, R. Sathyavathi, D.N. Rao, F. Krause, Coherently embedded Ag nanostructures in Si: 3D imaging and their application to SERS. Sci. Rep. 4, 4633 (2014). https://doi.org/10.1038/srep04633

    Article  Google Scholar 

  11. R.R. Juluri, A. Rath, A. Ghosh, P.V. Satyam, Substrate symmetry driven endotaxial silver nanostructures by chemical vapor deposition. J. Phys. Chem. C 117(25), 13247–13251 (2013). https://doi.org/10.1021/jp4016189

    Article  Google Scholar 

  12. K. Nagarajappa, P. Guha, A. Thirumurugan, P.V. Satyam, U.M. Bhatta, Low-energy ion beam synthesis of Ag endotaxial nanostructures in silicon. Appl. Phys. A 124(6), 402 (2018). https://doi.org/10.1007/s00339-018-1815-y

    Article  ADS  Google Scholar 

  13. P. Guha, R.R. Juluri, A. Bhukta, A. Ghosh, S. Maiti, A. Bhattacharyya, P.V. Satyam, In situ synchrotron X-ray diffraction study of coherently embedded silver nanostructure growth in silicon. CrystEngComm 19(45), 6811–6820 (2017). https://doi.org/10.1039/C7CE01441D

    Article  Google Scholar 

  14. S. Li, X. Huang, Q. Liu, X. Cao, F. Huo, H. Zhang, C.L. Gan, Vapor–liquid–solid growth of endotaxial semiconductor nanowires. Nano Lett. 12(11), 5565–5570 (2012). https://doi.org/10.1021/nl3025196

    Article  ADS  Google Scholar 

  15. Y. Maeda, Visible photoluminescence from nanocrystallite Ge embedded in a glassy SiO2 matrix: evidence in support of the quantum-confinement mechanism. Phys. Rev. B 51(3), 1658 (1995). https://doi.org/10.1103/PhysRevB.51.1658

    Article  ADS  Google Scholar 

  16. O. Kienzle, F. Ernst, M. Rühle, O.G. Schmidt, K. Eberl, Germanium “quantum dots” embedded in silicon: quantitative study of self-alignment and coarsening. Appl. Phys. Lett. 74(2), 269–271 (1999). https://doi.org/10.1063/1.123277

    Article  ADS  Google Scholar 

  17. C. Hua, A.J. Minnich, Importance of frequency-dependent grain boundary scattering in nanocrystalline silicon and silicon–germanium thermoelectrics. Semicond. Sci. Technol. 29(12), 124004 (2014). https://doi.org/10.1088/0268-1242/29/12/124004

    Article  ADS  Google Scholar 

  18. M. Yamamoto, T. Koshikawa, T. Yasue, H. Harima, K. Kajiyama, Formation of size controlled Ge nanocrystals in SiO2 matrix by ion implantation and annealing. Thin Solid Films 369(1–2), 100–103 (2000). https://doi.org/10.1016/S0040-6090(00)00844-0

    Article  ADS  Google Scholar 

  19. J.G. Zhu, C.W. White, J.D. Budai, S.P. Withrow, Y. Chen, Growth of Ge, Si, and SiGe nanocrystals in SiO2 matrices. J. Appl. Phys. 78(7), 4386–4389 (1995). https://doi.org/10.1063/1.359843

    Article  ADS  Google Scholar 

  20. G. Susheel Kumar, P. Guha, K. Nagarajappa, U.M. Bhatta, Growth of embedded Ge nanoclusters inside spatially confined SiO2 matrix: an in-situ TEM study. Phys. E 114, 113637 (2019). https://doi.org/10.1016/j.physe.2019.113637

    Article  Google Scholar 

  21. C.Y. Peng, C.F. Huang, Y.C. Fu, Y.H. Yang, C.Y. Lai, S.T. Chang, C.W. Liu, Comprehensive study of the Raman shifts of strained silicon and germanium. J. Appl. Phys. 105(8), 083537 (2009). https://doi.org/10.1063/1.3110184

    Article  ADS  Google Scholar 

  22. S. Vadavalli, S. Valligatla, B. Neelamraju, M.H. Dar, A. Chiasera, M. Ferrari, N.R. Desai, Optical properties of germanium nanoparticles synthesized by pulsed laser ablation in acetone. Front. Phys. 2, 57 (2014). https://doi.org/10.3389/fphy.2014.00057

    Article  Google Scholar 

  23. K. Biswas, J. He, Q. Zhang, G. Wang, C. Uher, V.P. Dravid, M.G. Kanatzidis, Strained endotaxial nanostructures with high thermoelectric figure of merit. Nat. Chem. 3(2), 160 (2011). https://doi.org/10.1038/NCHEM.955

    Article  Google Scholar 

  24. Supplementary online materials for, K. Biswas, J. He, Q. Zhang, G. Wang, C. Uher, V.P. Dravid, M. G. Kanatzidis, Strained endotaxial nanostructures with high thermoelectric figure of merit. Nat. Chem. 3(2), 160 (2011). https://doi.org/10.1038/nchem.955

Download references

Acknowledgements

This work is funded by UGC-DAE-CSR-KC/CRS/15/IOP/MS/01 collaborative research project. The authors would like to thank Prof. P V Satyam, IOP, Bhubaneswar, for providing access to the electron microscopy facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umananda M. Bhatta.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gundanna, S.K., Guha, P., Sundaravel, B. et al. Growth of endotaxial Ge nanocrystals in Si(100) matrix via low-energy ion implantation. Appl. Phys. A 125, 874 (2019). https://doi.org/10.1007/s00339-019-3170-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3170-z

Navigation