Skip to main content
Log in

Decomposition of toluene in a steady-state atmospheric-pressure glow discharge

  • Low-Temperature Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Results are presented from experimental studies of decomposition of toluene (C6H5CH3) in a polluted air flow by means of a steady-state atmospheric pressure glow discharge at different water vapor contents in the working gas. The experimental results on the degree of C6H5CH3 removal are compared with the results of computer simulations conducted in the framework of the developed kinetic model of plasma chemical decomposition of toluene in the N2: O2: H2O gas mixture. A substantial influence of the gas flow humidity on toluene decomposition in the atmospheric pressure glow discharge is demonstrated. The main mechanisms of the influence of humidity on C6H5CH3 decomposition are determined. The existence of two stages in the process of toluene removal, which differ in their duration and the intensity of plasma chemical decomposition of C6H5CH3 is established. Based on the results of computer simulations, the composition of the products of plasma chemical reactions at the output of the reactor is analyzed as a function of the specific energy deposition and gas flow humidity. The existence of a catalytic cycle in which hydroxyl radical OH acts a catalyst and which substantially accelerates the recombination of oxygen atoms and suppression of ozone generation when the plasma-forming gas contains water vapor is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Trushkin and I. V. Kochetov, Plasma Phys. Rep. 38, 407 (2012).

    Article  ADS  Google Scholar 

  2. A. M. Vandenbroucke, R. Morrent, N. De Geyter, and C. Leys, J. Hazard. Mater. 195, 30 (2011).

    Article  Google Scholar 

  3. R. Rudolph, K. P. Francke, and H. Miessner, Plasma Chem. Plasma Process. 22, 401 (2002).

    Article  Google Scholar 

  4. Yu. S. Akishev, V. B. Karalnik, I. V. Kochetov, et al., in Proceedings of the 16th International Symposium on Plasma Chemistry, Taormina, 2003, p. 226.

  5. R. Vertriest, R. Morrent, J. Dewulf, et al., Plasma Sources Sci. Technol. 12, 4121 (2003).

    Article  Google Scholar 

  6. H. M. Lee and M. B. Chang, Plasma Chem. Plasma Process. 23, 541 (2003).

    Article  Google Scholar 

  7. Guo Yu-fang, Ye Dai-qi, Chen Ke-fu, and Tian Ya-feng, Chem. Plasma Proc. 26, 237 (2006).

    Article  Google Scholar 

  8. M. Kogoma, Y. Miki, K. Tanaka, and K. Takahashi, Plasma Process. Polym. 3, 727 (2006).

    Article  Google Scholar 

  9. Chang Ming Du, Jian Hua Yan, and B. Cheron, Plasma Sources Sci. Technol. 16, 791 (2007).

    Article  ADS  Google Scholar 

  10. J. Van Durme, J. Dewulf, W. Sysmans, et al., Chemosphere 68, 1821 (2007).

    Article  Google Scholar 

  11. N. Blin-Simiand, F. Jorand, Z. Belhadj-Miled, et al., Int. J. Plasma Environ. Sci. Technol. 1, 64 (2007).

    Google Scholar 

  12. R. A. Korzekwa, M. G. Grothaus, R. K. Hutcherson, et al., Rev. Sci. Instrum. 69, 1886 (1998).

    Article  ADS  Google Scholar 

  13. S. Futamura, T. Terasawa, and M. Sugasawa, in Proceedings of the 18th International Symposium on Plasma Chemistry, Kyoto, 2007.

  14. D. N. Chin, C. W. Park, and C. W. Hahn, Bull. Korean Chem. Soc. 21, 228 (2000).

    Google Scholar 

  15. Z. Falkenstein and J. J. Coogan, J. Phys. D 30, 817 (1997).

    Article  ADS  Google Scholar 

  16. Y. Akishev, O. Goossens, T. Callebaut, et al., J. Phys. D 34, 2875 (2001).

    Article  ADS  Google Scholar 

  17. Y. Akishev, A. Deryugin, I. Kochetov, et al., J. Phys. D 26, 1632 (1993).

    Article  ADS  Google Scholar 

  18. Yu. S. Akishev, A. A. Deryugin, V. B. Karal’nik, et al., Plasma Phys. Rep. 20, 511 (1994).

    ADS  Google Scholar 

  19. K. H. Becker, E. H. Fink, W. Groth, et al., Faraday Discuss. Chem. Soc., No. 53, 35 (1972).

  20. J. Balamuta and M. F. Golde, J. Chem. Phys. 76, 2430 (1982).

    Article  ADS  Google Scholar 

  21. Y. Itikawa and N. Mason, J. Phys. Chem. Ref. Data 34, 1 (2005).

    Article  ADS  Google Scholar 

  22. J. A. Manion, R. E. Huie, R. D. Levin, et al., NIST Chemical Kinetics Database, NIST Standard Reference Database 17, Ver. 7.0, Release 1.6.4, Data version 2008.12 (National Inst. of Standards, Technology, Gaithersburg, MD, 2008), http://kinetics.nist.gov/

    Google Scholar 

  23. L. W. Sieck, T. J. Buckley, J. T. Herron, and D. S. Green, Plasma Chem. Plasma Process. 21, 441 (2001).

    Article  Google Scholar 

  24. N. Blin-Simiand, F. Jorand, L. Magne, et al., Plasma Chem. Plasma Process. 28, 429 (2008).

    Article  Google Scholar 

  25. Master Chemical Mechanism (University of Leeds, Leeds, UK, 2010), http://mcm.leeds.ac.uk/MCM/

  26. J. A. Miller and C. F. Melius, Combust. Flame 91, 21 (1992).

    Article  Google Scholar 

  27. R. Knystautas, J. H. S. Lee, J. E. Shepherd, and A. Teodorczyk, Combust. Flame 115, 424 (1998).

    Article  Google Scholar 

  28. H.-Y. Zhang and J. T. McKinnon, Combust. Sci. Technol. 107, 261 (1995).

    Article  Google Scholar 

  29. W. J. Pitz and C. K. Westbrook, Combust. Flame 63, 113 (1986).

    Article  Google Scholar 

  30. M. Deminsky, V. Chorkov, G. Belov, et al., Comput. Mater. Sci. 2, 169 (2003).

    Article  Google Scholar 

  31. Yu. S. Akishev, M. E. Grushin, I. V. Kochetov, et al., Plasma Phys. Rep. 26, 157 (2000).

    Article  ADS  Google Scholar 

  32. H. H. Kim, A. Ogata, and S. Futamura, J. Phys. D 38, 1292 (2005).

    Article  ADS  Google Scholar 

  33. A. Ogata, H. H. Kim, S. M. Oh, et al., in Proceedings of the International Conference on Electrostatic Precipitation, Cairns, 2006, p. 1.

  34. V. T. Samoilovich, V. I. Gibalov, and K. V. Kozlov, Physical Chemistry of Barrier Discharge (Izd. Mosk. Gos. Univ., Moscow, 1989) [in Russian].

    Google Scholar 

  35. R. Ono and R. Oda, Int. J. Plasma Environ. Sci. Technol. 1, 123 (2007).

    Google Scholar 

  36. V. A. Bityurin, E. A. Filimonova, and G. V. Naidis, IEEE Trans. Plasma Sci. 37, 911 (2009).

    Article  ADS  Google Scholar 

  37. M. B. Zheleznyak and E. A. Filimonova, Teplofiz. Vys. Temp. 36, 557 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.N. Trushkin, M.E. Grushin, I.V. Kochetov, N.I. Trushkin, Yu.S. Akishev, 2013, published in Fizika Plazmy, 2013, Vol. 39, No. 2, pp. 193–209.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trushkin, A.N., Grushin, M.E., Kochetov, I.V. et al. Decomposition of toluene in a steady-state atmospheric-pressure glow discharge. Plasma Phys. Rep. 39, 167–182 (2013). https://doi.org/10.1134/S1063780X13020025

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X13020025

Keywords

Navigation