Plasma Physics Reports

, Volume 39, Issue 2, pp 167–182 | Cite as

Decomposition of toluene in a steady-state atmospheric-pressure glow discharge

  • A. N. Trushkin
  • M. E. Grushin
  • I. V. Kochetov
  • N. I. Trushkin
  • Yu. S. Akishev
Low-Temperature Plasma


Results are presented from experimental studies of decomposition of toluene (C6H5CH3) in a polluted air flow by means of a steady-state atmospheric pressure glow discharge at different water vapor contents in the working gas. The experimental results on the degree of C6H5CH3 removal are compared with the results of computer simulations conducted in the framework of the developed kinetic model of plasma chemical decomposition of toluene in the N2: O2: H2O gas mixture. A substantial influence of the gas flow humidity on toluene decomposition in the atmospheric pressure glow discharge is demonstrated. The main mechanisms of the influence of humidity on C6H5CH3 decomposition are determined. The existence of two stages in the process of toluene removal, which differ in their duration and the intensity of plasma chemical decomposition of C6H5CH3 is established. Based on the results of computer simulations, the composition of the products of plasma chemical reactions at the output of the reactor is analyzed as a function of the specific energy deposition and gas flow humidity. The existence of a catalytic cycle in which hydroxyl radical OH acts a catalyst and which substantially accelerates the recombination of oxygen atoms and suppression of ozone generation when the plasma-forming gas contains water vapor is established.


Glow Discharge Plasma Physic Report Water Vapor Content Toluene Removal Plasma Chemical Reactor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. N. Trushkin and I. V. Kochetov, Plasma Phys. Rep. 38, 407 (2012).ADSCrossRefGoogle Scholar
  2. 2.
    A. M. Vandenbroucke, R. Morrent, N. De Geyter, and C. Leys, J. Hazard. Mater. 195, 30 (2011).CrossRefGoogle Scholar
  3. 3.
    R. Rudolph, K. P. Francke, and H. Miessner, Plasma Chem. Plasma Process. 22, 401 (2002).CrossRefGoogle Scholar
  4. 4.
    Yu. S. Akishev, V. B. Karalnik, I. V. Kochetov, et al., in Proceedings of the 16th International Symposium on Plasma Chemistry, Taormina, 2003, p. 226.Google Scholar
  5. 5.
    R. Vertriest, R. Morrent, J. Dewulf, et al., Plasma Sources Sci. Technol. 12, 4121 (2003).CrossRefGoogle Scholar
  6. 6.
    H. M. Lee and M. B. Chang, Plasma Chem. Plasma Process. 23, 541 (2003).CrossRefGoogle Scholar
  7. 7.
    Guo Yu-fang, Ye Dai-qi, Chen Ke-fu, and Tian Ya-feng, Chem. Plasma Proc. 26, 237 (2006).CrossRefGoogle Scholar
  8. 8.
    M. Kogoma, Y. Miki, K. Tanaka, and K. Takahashi, Plasma Process. Polym. 3, 727 (2006).CrossRefGoogle Scholar
  9. 9.
    Chang Ming Du, Jian Hua Yan, and B. Cheron, Plasma Sources Sci. Technol. 16, 791 (2007).ADSCrossRefGoogle Scholar
  10. 10.
    J. Van Durme, J. Dewulf, W. Sysmans, et al., Chemosphere 68, 1821 (2007).CrossRefGoogle Scholar
  11. 11.
    N. Blin-Simiand, F. Jorand, Z. Belhadj-Miled, et al., Int. J. Plasma Environ. Sci. Technol. 1, 64 (2007).Google Scholar
  12. 12.
    R. A. Korzekwa, M. G. Grothaus, R. K. Hutcherson, et al., Rev. Sci. Instrum. 69, 1886 (1998).ADSCrossRefGoogle Scholar
  13. 13.
    S. Futamura, T. Terasawa, and M. Sugasawa, in Proceedings of the 18th International Symposium on Plasma Chemistry, Kyoto, 2007.Google Scholar
  14. 14.
    D. N. Chin, C. W. Park, and C. W. Hahn, Bull. Korean Chem. Soc. 21, 228 (2000).Google Scholar
  15. 15.
    Z. Falkenstein and J. J. Coogan, J. Phys. D 30, 817 (1997).ADSCrossRefGoogle Scholar
  16. 16.
    Y. Akishev, O. Goossens, T. Callebaut, et al., J. Phys. D 34, 2875 (2001).ADSCrossRefGoogle Scholar
  17. 17.
    Y. Akishev, A. Deryugin, I. Kochetov, et al., J. Phys. D 26, 1632 (1993).ADSCrossRefGoogle Scholar
  18. 18.
    Yu. S. Akishev, A. A. Deryugin, V. B. Karal’nik, et al., Plasma Phys. Rep. 20, 511 (1994).ADSGoogle Scholar
  19. 19.
    K. H. Becker, E. H. Fink, W. Groth, et al., Faraday Discuss. Chem. Soc., No. 53, 35 (1972).Google Scholar
  20. 20.
    J. Balamuta and M. F. Golde, J. Chem. Phys. 76, 2430 (1982).ADSCrossRefGoogle Scholar
  21. 21.
    Y. Itikawa and N. Mason, J. Phys. Chem. Ref. Data 34, 1 (2005).ADSCrossRefGoogle Scholar
  22. 22.
    J. A. Manion, R. E. Huie, R. D. Levin, et al., NIST Chemical Kinetics Database, NIST Standard Reference Database 17, Ver. 7.0, Release 1.6.4, Data version 2008.12 (National Inst. of Standards, Technology, Gaithersburg, MD, 2008), Google Scholar
  23. 23.
    L. W. Sieck, T. J. Buckley, J. T. Herron, and D. S. Green, Plasma Chem. Plasma Process. 21, 441 (2001).CrossRefGoogle Scholar
  24. 24.
    N. Blin-Simiand, F. Jorand, L. Magne, et al., Plasma Chem. Plasma Process. 28, 429 (2008).CrossRefGoogle Scholar
  25. 25.
    Master Chemical Mechanism (University of Leeds, Leeds, UK, 2010),
  26. 26.
    J. A. Miller and C. F. Melius, Combust. Flame 91, 21 (1992).CrossRefGoogle Scholar
  27. 27.
    R. Knystautas, J. H. S. Lee, J. E. Shepherd, and A. Teodorczyk, Combust. Flame 115, 424 (1998).CrossRefGoogle Scholar
  28. 28.
    H.-Y. Zhang and J. T. McKinnon, Combust. Sci. Technol. 107, 261 (1995).CrossRefGoogle Scholar
  29. 29.
    W. J. Pitz and C. K. Westbrook, Combust. Flame 63, 113 (1986).CrossRefGoogle Scholar
  30. 30.
    M. Deminsky, V. Chorkov, G. Belov, et al., Comput. Mater. Sci. 2, 169 (2003).CrossRefGoogle Scholar
  31. 31.
    Yu. S. Akishev, M. E. Grushin, I. V. Kochetov, et al., Plasma Phys. Rep. 26, 157 (2000).ADSCrossRefGoogle Scholar
  32. 32.
    H. H. Kim, A. Ogata, and S. Futamura, J. Phys. D 38, 1292 (2005).ADSCrossRefGoogle Scholar
  33. 33.
    A. Ogata, H. H. Kim, S. M. Oh, et al., in Proceedings of the International Conference on Electrostatic Precipitation, Cairns, 2006, p. 1.Google Scholar
  34. 34.
    V. T. Samoilovich, V. I. Gibalov, and K. V. Kozlov, Physical Chemistry of Barrier Discharge (Izd. Mosk. Gos. Univ., Moscow, 1989) [in Russian].Google Scholar
  35. 35.
    R. Ono and R. Oda, Int. J. Plasma Environ. Sci. Technol. 1, 123 (2007).Google Scholar
  36. 36.
    V. A. Bityurin, E. A. Filimonova, and G. V. Naidis, IEEE Trans. Plasma Sci. 37, 911 (2009).ADSCrossRefGoogle Scholar
  37. 37.
    M. B. Zheleznyak and E. A. Filimonova, Teplofiz. Vys. Temp. 36, 557 (1998).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • A. N. Trushkin
    • 1
  • M. E. Grushin
    • 1
  • I. V. Kochetov
    • 1
  • N. I. Trushkin
    • 1
  • Yu. S. Akishev
    • 1
  1. 1.Troitsk Institute for Innovation and Fusion ResearchTroitsk, MoscowRussia

Personalised recommendations