Skip to main content
Log in

Large-amplitude nuclear motion formulated in terms of dissipation of quantum fluctuations

  • XIV International Seminar on Electromagnetic Interactions of Nuclei “EMIN-2015” Moscow, October 5–8, 2015
  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The potential-barrier penetrability and quasi-stationary thermal-decay rate of a metastable state are formulated in terms of microscopic quantum diffusion. Apart from linear coupling in momentum between the collective and internal subsystems, the formalism embraces the more general case of linear couplings in both the momentum and the coordinates. The developed formalism is then used for describing the process of projectile-nucleus capture by a target nucleus at incident energies near and below the Coulomb barrier. The capture partial probability, which determines the cross section for formation of a dinuclear system, is derived in analytical form. The total and partial capture cross sections, mean and root-mean-square angular momenta of the formed dinuclear system, astrophysical -factors, logarithmic derivatives, and barrier distributions are derived for various reactions. Also investigated are the effects of nuclear static deformation and neutron transfer between the interacting nuclei on the capture cross section and its isotopic dependence, and the entrance-channel effects on the capture process. The results of calculations for reactions involving both spherical and deformed nuclei are in good agreement with available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Sargsyan, G. G. Adamian, N. V. Antonenko, W. Scheid, and H. Q. Zhang, “Examination of the different roles of neutron transfer in the sub-barrier fusion reactions 32S + 94,96Zr and 40Ca + 94,96Zr,” Phys. Rev. C 91, 014613 (2015).

    Article  ADS  Google Scholar 

  2. A. A. Ogloblin, H. Q. Zhang, C. J. Lin, H. M. Jia, S. V. Khlebnikov, E. A. Kuzmin, W. H. Trzaska, X. X. Xu, F. Yan, V. V. Sargsyan, G. G. Adamian, N. V. Antonenko, and W. Scheid, “Role of neutron transfer in asymmetric fusion reactions at sub-barrier energies,” Eur. Phys. J. A 50, 157 (2014).

    Article  ADS  Google Scholar 

  3. V. V. Sargsyan, G. G. Adamian, N. V. Antonenko, and R. P. S. Gomes, “Disagreement between capture probabilities extracted from capture and quasi-elastic backscattering excitation functions,” Eur. Phys. J. A 50, 184 (2014).

    Article  ADS  Google Scholar 

  4. B. B. Back, H. Esbensen, C. L. Jiang, and K. E. Rehm, “Recent developments in heavy-ion fusion reactions,” Rev. Mod. Phys. 86, 317 (2014).

    Article  ADS  Google Scholar 

  5. V. V. Sargsyan, G. Scamps, G. G. Adamian, N. V. Antonenko, and D. Lacroix, “Neutron-pair transfer in the sub-barrier capture process,” Phys. Rev. C 88, 064601 (2013).

    Article  ADS  Google Scholar 

  6. C. A. Bertulani, “Fusion 11 Conference Summary,” EPJ Web Conf. 17, 15001 (2011).

    Article  Google Scholar 

  7. Z. Kohley, J. F. Liang, D. Shapira, R. L. Varner, C. J.Gross, J. M. Allmond, A. L. Caraley, E. A. Coello, F. Favela, K. Lagergren, and P. E. Mueller, “Nearbarrier fusion of Sn + Ni and Te + Ni systems: Examining the correlation between nucleon transfer and fusion enhancement,” Phys. Rev. Lett. 107, 202701 (2011).

    Article  ADS  Google Scholar 

  8. F. Scarlassara, G. Montagnoli, E. Fioretto, C. - L. Jiang, A. M. Stefanini, L. Corradi, B. B. Back, N. Patel, K. E. Rehm, D. Sewerinyak, P. Singh Pushpendra, X. D. Tang, C. M. Deibel, B. Di Giovine, J. P. Greene, H. D. Henderson, M. Notani, S. T. Marley, and S. Zhu, “Fusion of 60Ni + 100Mo below barrier,” EPJ Web Conf. 17, 05002 (2011).

    Article  Google Scholar 

  9. H. Q. Zhang, C. L. Zhang, C. J. Lin, Z. H. Liu, F. Yang, A. K. Nasirov, G. Mandaglio, M. Manganaro, and G. Giardina, “Competition between fusion-fission and quasifission processes in the 32S + 182,184W reactions,” Phys. Rev. C 81, 034611 (2010).

    Article  ADS  Google Scholar 

  10. G. Montagnoli, A. M. Stefanini, L. Corradi, S. Courtin, E. Fioretto, F. Haas, D. Lebhertz, F. Scarlassara, R. Silvestri, and S. Szilner, “Sub-barrier fusion of 36S + 64Ni and other medium-light systems,” Phys. Rev. C 82, 064609 (2010).

    Article  ADS  Google Scholar 

  11. M. G. Itkis, I. M. Itkis, G. N. Knyazheva, and E. M. Kozulin, “Fusion-fission and quasifission of superheavy systems in heavy-ion induced reactions,” Nucl. Phys. A 834, 374 (2010).

    Article  ADS  Google Scholar 

  12. S. Ayik, B. Yilmaz, and D. Lacroix, “Stochastic semiclassical description of fusion at near-barrier energies,” Phys. Rev. C 81, 034605 (2010).

    Article  ADS  Google Scholar 

  13. V. Yu. Denisov and N. A. Pilipenko, “Fusion of deformed nuclei: 12C + 12C,” Phys. Rev. C 81, 025805 (2010).

    Article  ADS  Google Scholar 

  14. G. Hupin and D. Lacroix, “Quantum Monte Carlo method applied to non-Markovian barrier transmission,” Phys. Rev. C 81, 014609 (2010).

    Article  ADS  Google Scholar 

  15. V. V. Sargsyan, G. G. Adamian, N. V. Antonenko, and W. Scheid, “Peculiarities of sub-barrier fusion with quantum diffusion approach,” Eur. Phys. J. A 45, 125 (2010)

    Article  ADS  Google Scholar 

  16. V. V. Sargsyan, G. G. Adamian, N. V. Antonenko, W. Scheid, and H. Q. Zhang, “Sub-barrier capture with quantum diffusion approach: Actinide-based reactions,” Eur. Phys. J. A 47, 38 (2011)

    Article  ADS  Google Scholar 

  17. V. V. Sargsyan, G. G. Adamian, N. V. Antonenko, W. Scheid, and H. Q. Zhang, “Peculiarities of subbarrier reactions with heavy ions,” J. Phys. Conf. Ser. 282, 012001 (2011)

    Article  Google Scholar 

  18. V. V. Sargsyan, R. A. Kuzyakin, G. G. Adamian, N. V. Antonenko, W. Scheid, and H. Q. Zhang, “Sub-barrier capture with quantum diffusion approach,” EPJ Web Conf. 17, 04003 (2011).

    Article  Google Scholar 

  19. M. Dasgupta, D. J. Hinde, A. Diaz-Torres, B. Bouriquet, C. I. Low, G. J. Milburn, and J. O. Newton, “Beyond the coherent coupled channels description of nuclear fusion,” Phys. Rev. Lett. 99, 192701 (2007).

    Article  ADS  Google Scholar 

  20. C. L. Jiang, H. Esbensen, K. E. Rehm, B. B. Back, R. V. F. Janssens, J. A. Caggiano, P. Collon, J. Greene, A. M. Heinz, D. J. Henderson, I. Nishinaka, T. O. Pennington, and D. Seweryniak, “Unexpected behavior of heavy-ion fusion cross sections at extreme sub-barrier energies,” Phys. Rev. Lett. 89, 052701 (2002).

    Article  ADS  Google Scholar 

  21. C. L. Jiang, K. E. Rehm, R. V. F. Janssens, H. Esbensen, I. Ahmad, B. B. Back, P. Collon, C. N. Davids, J. P. Greene, D. J. Henderson, G. Mukherjee, R. C. Pardo, M. Paul, T. O. Pennington, D. Seweryniak, S. Sinha, and Z. Zhou, “Influence of nuclear structure on sub-barrier hindrance in Ni + Ni fusion,” Phys. Rev. Lett. 93, 012701 (2004).

    Article  ADS  Google Scholar 

  22. C. L. Jiang, K. E. Rehm, H. Esbensen, R. V. F. Janssens, B. B. Back, C. N. Davids, J. P. Greene, D. J. Henderson, C. J. Lister, R. C. Pardo, T. Pennington, D. Peterson, D. Seweryniak, B. Shumard, S. Sinha, X. D. Tang, I. Tanihata, S. Zhu, P. Collon, S. Kurtz, and M. Paul, “Hindrance of heavy-ion fusion at extreme sub-barrier energies in open-shell colliding systems,” Phys. Rev. C 71, 044613 (2005).

    Article  ADS  Google Scholar 

  23. C. R. Morton, A. C. Berriman, M. Dasgupta, D. J. Hinde, J. O. Newton, K. Hagino, and I. J. Thompson, “Coupled-channels analysis of the 16O + 208Pb fusion barrier distribution,” Phys. Rev. C 60, 044608 (1999).

    Article  ADS  Google Scholar 

  24. K. Langanke and C. A. Barnes, “Nucleosynthesis in the big bang and in stars,” Adv. Nucl. Phys. 22, 173 (1996)

    Google Scholar 

  25. A. Aprahamian, K. Langanke, and M. Wiescher, “Nuclear structure aspects in nuclear astrophysics,” Prog. Part. Nucl. Phys. 54, 535 (2005).

    Article  ADS  Google Scholar 

  26. S. P. Tretyakova, A. A. Ogloblin, R. N. Sagaidak, S. V. Khlebnikov, and W. Trzaska, “Study of nucleusnucleus potential by combined measurement of deep sub-barrier fusion and cluster decay,” Nucl. Phys. A 734, E33 (2004).

    Article  ADS  Google Scholar 

  27. Yu. Ts. Oganessian, M. G. Itkis, E. M. Kozulin, B. I. Pustylnik, S. P. Tretyakova, L. Calabretta, and T. Guzel, “Investigation of the fusion-fission reaction 208Pb + 16O at subbarrier energies,” JINR Rapid Comm. 75, 123 (1996).

    Google Scholar 

  28. S. P. Tretyakova, A. A. Ogloblin, R. N. Sagaidak, W. Trzaska, S. V. Khlebnikov, R. Julin, J. Perkowski, “Study of extremely deep subbarrier 22Ne + 208Pb fusion-fission and evidence for alpha-decay-like mechanism of 230U cluster radioactivity,” Nucl. Phys. A 738, 487 (2004).

    Article  ADS  Google Scholar 

  29. A. B. Balantekin and N. Takigawa, “Quantum tunneling in nuclear fusion,” Rev. Mod. Phys. 70, 77 (1998).

    Article  ADS  Google Scholar 

  30. L. F. Canto, P. R. S. Gomes, R. Donangelo, and M. S. Hussein, “Fusion and breakup of weakly bound nuclei,” Phys. Rep. 426, 1 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  31. L. F. Canto, P. R. S. Gomes, R. Donangelo, J. Lubian, and M. S. Hussein, “Recent developments in fusion and direct reactions with weakly bound nuclei,” Phys. Rep. 596, 1 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  32. W. Henning, F. L. H. Wolfs, J. P. Schiffer, and K. E. Rehm, “Subbarrier nucleon transfer: Doorway to heavy-ion fusion,” Phys. Rev. Lett. 58, 318 (1987).

    Article  ADS  Google Scholar 

  33. P. H. Stelson, H. J. Kim, M. Beckerman, D. Shapira, and R. L. Robinson, “Fusion cross sections for 46,50Ti + 90Zr, 93Nb and some systematics of heavy-ion fusion at barrier and subbarrier energies,” Phys. Rev. C 41, 1584 (1990)

    Article  ADS  Google Scholar 

  34. C. L. Jiang, K. E. Rehm, J. Gehring, B. Glagola, W. Kutschera, M. Rhein, and A. H. Wuosmaa, “Observation of the one- to six-neutron transfer reactions at sub-barrier energies,” Phys. Lett. B 337, 59 (1994).

    Article  ADS  Google Scholar 

  35. R. Pengo, D. Evers, K. E. G. Lobner, U. Quade, K. Rudolph, S. J. Skorka, and I. Weidl, “Nuclear structure effects in sub-barrier fusion cross sections,” Nucl. Phys. A 411, 255 (1983).

    Article  ADS  Google Scholar 

  36. R. B. Roberts, S. B. Gazes, J. E. Mason, M. Satteson, S. G. Teichmann, L. L. Lee, J. F. Liang, J. C. Mahon, and R. J. Vojtech, “Sub-barrier one- and two-neutron pickup measurements in 32S + 93Nb, 98,100Mo reactions at 1800,” Phys. Rev. C 47, R1831 (1993).

    Article  ADS  Google Scholar 

  37. D. Ackermann, P. Bednarczyk, L. Corradi, D. R. Napoli, C. M. Petrache, P. Spolaore, A. M. Stefanini, K. M. Varier, H. Zhang, F. Scarlassara, S. Beghini, G. Montagnoli, L. Muller, G. F. Segato, F. Soramel, and C. Signorini, “Cross sections and average angular momenta in the fusion of 28Si + 94,100Mo and 58,64Ni + 64Ni,” Nucl. Phys. A 609, 91 (1996).

    Article  ADS  Google Scholar 

  38. R. A. Broglia, C. H. Dasso, S. Landowne, and A. Winther, “Possible effect of transfer reactions on heavy ion fusion at sub-barrier energies,” Phys. Rev. C 27, 2433 (1983)

    Article  ADS  Google Scholar 

  39. R. A. Broglia, C. H. Dasso, S. Landowne, and G. Pollarolo, “Estimate of enhancements in sub-barrier heavy-ion fusion cross sections due to coupling to inelastic and transfer reaction channels,” Phys. Lett. B 133, 34 (1983).

    Article  ADS  Google Scholar 

  40. G. Giardina, F. Hanappe, A. I. Muminov, A. K. Nasirov, and L. Stuttge, “Capture and fusion dynamics in heavy-ion collisions,” Nucl. Phys. A 165, 671 (2000)

    Google Scholar 

  41. G. Fazio, G. Giardina, G. Mandaglio, R. Ruggeri, A. I. Muminov, A. K. Nasirov, Yu. Ts. Oganessian, A. G. Popeko, R. N. Sagaidak, A. V. Yeremin, S. Hofmann, F. Hanappe, and C. Stodel, “Strong influence of the entrance channel on the formation of compound nuclei 216,222Th* and their evaporation residues,” Phys. Rev. C 72, 064614 (2005)

    Article  ADS  Google Scholar 

  42. A. K. Nasirov, G. Mandaglio, M. Manganaro, A. I. Muminov, G. Fazio, and G. Giardina, “Quasifission and difference in formation of evaporation residues in the 16O + 184W and 19F + 181Ta reactions,” Phys. Lett. B 686, 72 (2010).

    Article  ADS  Google Scholar 

  43. R. Vandenbosch, “Angular momentum distributions in subbarrier fusion reactions,” Ann. Rev. Nucl. Part. Sci. 42, 447 (1992).

    Article  ADS  Google Scholar 

  44. B. Haas, G. Duchêne, F. A. Beck, T. Byrski, C. Gehringer, J. C. Merdinger, A. Nourredine, V. Rauch, J. P. Vivien, J. Barrette, S. Tobbeche, E. Bozek, J. Styczen, J. Keinonen, J. Dudek, and W. Nazarewicz, “Strong angular momentum effects in near-barrier fusion reactions,” Phys. Rev. Lett. 54, 398 (1985).

    Article  ADS  Google Scholar 

  45. A. Ruckelshausen, R. D. Fischer, W. Kuhn, V. Metag, R. Muhlhans, R. Novotny, T. L. Khoo, R. V. F. Janssens, H. Groger, D. Habs, H. W. Heyng, R. Repnow, D. Schwalm, G. Duchene, R. M. Freeman, B. Haas, F. Haas, S. Hlavac, and R. S. Simon, “Unexpected entrance-channel effects in the decay of the compound nucleus 156Er,” Phys. Rev. Lett. 56, 2356 (1986).

    Article  ADS  Google Scholar 

  46. S. Gil, D. Abriola, D. E. DiGregorio, M. Tada, M. Elgue, A. Etchegoyen, M. C. Etchegoyen, J. Fernandez Niello, A. M. J. Ferrero, A. O. Macchiavelli, A. J. Pacheco, J. E. Testoni, P. Silveira Gomes, V. R. Vanin, A. Charlop, A. Garca, S. Kailas, S. J. Luke, E. Renshaw, and R. Vandenbosch, “Observation of mean-spin barrier bump in sub-barrier fusion of 28Si with 154Sm,” Phys. Rev. Lett. 65, 3100 (1990).

    Article  ADS  Google Scholar 

  47. S. Gil, F. Hasenbalg, J. E. Testoni, D. Abriola, M. C. Berisso, M. di Tada, A. Etchegoyen, J. O. Fernandez Niello, A. J. Pacheco, A. Charlop, A. A. Sonzogni, and R. Vandenbosch, “Fusion cross sections in systems leading to 170Hf at near-barrier energies,” Phys. Rev. C 51, 1336 (1995).

    Article  ADS  Google Scholar 

  48. R. N. Sagaidak, G. N. Kniajeva, I. M. Itkis, M. G. Itkis, N. A. Kondratiev, E. M. Kozulin, I. V. Pokrovsky, A. I. Svirikhin, V. M. Voskressensky, A. V. Yeremin, L. Corradi, A. Gadea, A. Latina, A. M. Stefanini, and S. Szilner, “Fusion suppression in mass-asymmetric reactions leading to Ra compound nuclei,” Phys. Rev. C 68, 014603 (2003).

    Article  ADS  Google Scholar 

  49. M. Trotta, A. M. Stefanini, L. Corradi, E. Fioretto, A. Gadea, S. Szilner, S. Beghini, G. Montagnoli, F. Scarlassara, A. Yu. Chizhov, I. M. Itkis, G. N. Kniajeva, E. M. Kozulin, N. A. Kondratiev, and I. V. Pokrovsky, “Fusion of 48Ca + 154Sm near the Coulomb barrier: Enhancement vs. suppression,” Nucl. Phys. A 734, 245 (2004).

    Article  ADS  Google Scholar 

  50. R. G. Thomas, D. J. Hinde, D. Duniec, F. Zenke, M. Dasgupta, M. L. Brown, M. Evers, L. R. Gasques, M. D. Rodriguez, and A. Diaz-Torres, “Entrance channel dependence of quasifission in reactions forming 220Th,” Phys. Rev. C 77, 034610 (2008).

    Article  ADS  Google Scholar 

  51. G. Mohanto, N. Madhavan, S. Nath, Jhilam Sadhukhan, J. Gehlot, I. Mazumdar, M. B. Naik, E. Prasad, Ish Mukul, T. Varughese, A. Jhingan, R. K. Bhowmik, A. K. Sinha, D. A. Gothe, P. B. Chavan, Santanu Pal, V. S. Ramamurthy, and A. Roy, “Entrance channel effect on ER spin Distribution,” Nucl. Phys. A 890, 62 (2012).

    Article  ADS  Google Scholar 

  52. N. N. Bogolyubov, Selected Works in Three volumes (Naukova Dumka, Kiev, 1971) [in Russian].

    MATH  Google Scholar 

  53. A. O. Caldeira and A. J. Leggett, “Path integral approach to quantum Brownian motion,” Physica A 121, 587 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. A. O. Caldeira and A. J. Leggett, “Quantum tunnelling in a dissipative system,” Ann. Phys. 149, 374 (1983)

    Article  ADS  MATH  Google Scholar 

  55. A. O. Caldeira and A. J. Leggett, “Influence of dissipation on quantum tunneling in macroscopic systems,” Phys. Rev. Lett. 46, 211 (1981)

    Article  ADS  Google Scholar 

  56. A. O. Caldeira and A. J. Leggett, “Comment on probabilities for quantum tunneling through a barrier with linear passive dissipation,” Phys. Rev. Lett. 48, 1571 (1982).

    Article  ADS  Google Scholar 

  57. N. G. van Kampen, Stochastic Processes in Physics and Chemistry (Amsterdam: North-Holland, 1981).

    MATH  Google Scholar 

  58. C. W. Gardiner, Quantum Noise (Berlin: Springer, 1991).

    Book  MATH  Google Scholar 

  59. H. J. Carmichael, An Open System Approach to Quantum Optics (Berlin: Springer,1993).

  60. Yu. L. Klimontovich, Statistical Theory of Open Systems (Dordrecht: Kluwer Academic Publishers, 1995).

    Book  MATH  Google Scholar 

  61. D. Zubarev, V. Morozov, and G. Röpke, Statistical Mechanics of Nonequilibrium Processes (Berlin: Akademie Verlag, 1997).

    MATH  Google Scholar 

  62. U. Weiss, Quantum Dissipative Systems (Singapore: Wold Scientific, 1999).

    Book  MATH  Google Scholar 

  63. G. W. Ford and J. T. Lewis, and R. F. O’Connell, “Quantum Langevin equation,” Phys. Rev. A 37, 4419 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  64. K. Lindenberg and B. West, “Statistical properties of quantum systems: The linear oscillator,” Phys. Rev. A 30, 568 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  65. V. V. Sargsyan, Z. Kanokov, G. G. Adamyan, and N. V. Antonenko, “Quantum statistical effects in nuclear reactions, fission, and open quantum systems,” Fiz. Elem. Chastits At. Yadra 41, 329 (2010) [in Russian].

    Google Scholar 

  66. H. Grabert, P. Schramm, and G.-L. Ingold, “Quantum Brownian motion: The functional integral approach,” Phys. Rep. 168, 115–207 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  67. P. Talkner, “The failure of the quantum regression hypothesis,” Ann. Phys. (New York) 167, 390 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  68. G. G. Adamian, N. V. Antonenko, and W. Scheid, “Tunneling with dissipation in open quantum systems,” Phys. Lett. A 244, 482 (1998)

    Article  ADS  Google Scholar 

  69. G. G. Adamian, N. V. Antonenko, and W. Scheid, “Diffusion coefficients in coordinate in density matrix description of non-equilibrium quantum processes,” Phys. Lett. A 260, 39 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. Yu. V. Palchikov, G. G. Adamian, N. V. Antonenko, and W. Scheid, “Effect of transport coefficients on the time dependence of a density matrix,” J. Phys. A 33, 4265 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  71. Yu. V. Palchikov, G. G. Adamian, N. V. Antonenko, and W. Scheid, “Generalization of Kramers formula for open quantum systems,” Physica A 316, 297 (2002).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  72. V. V. Volkov, “Deep inelastic transfer reactions—The new type of reactions between complex nuclei,” Phys. Rep. 44, 93 (1978).

    Article  ADS  Google Scholar 

  73. R. Bass, Nuclear Reactions with Heavy Ions (Berlin: Springer, 1980), p. 203.

    Google Scholar 

  74. W. Nörenberg, Heavy Ion Collisions, Ed. by R. Bock (Amsterdam: Elsevier, 1980), v. 2, p. 1.

  75. R. V. Dzholos and R. Schmidt, “Interactions of heavy ions at energies near 10 MeV/nucleon,” Fiz. Elem. Chastits At. Yadra 12, 324 (1981) [in Russian]

    Google Scholar 

  76. R. Schmidt, D. V. Toneev, and G. Wolschin, “Mass transport and dynamics of the relative motion in deeply inelastic heavy-ion collisions,” Nucl. Phys. A 311, 247 (1978).

    Article  ADS  Google Scholar 

  77. W. U. Schröder and J. R. Huizenga, Treatise on Heavy-Ion Science, Ed. by D. A. Bromley (New York: Plenum Press, 1984), v. 2, p. 115.

  78. H. Freiesleben and J. V. Kratz, “N/Z-Equilibration and nucleon exchange in dissipative heavy-Ion collisions,” Phys. Rep. 106, 1 (1984).

    Article  ADS  Google Scholar 

  79. P. Fröbrich, “Fusion and capture of heavy ions above the barrier: Analysis of experimental data with the surface friction model,” Phys. Rep. 116, 337 (1984).

    Article  ADS  Google Scholar 

  80. J. A. Maruhn, W. Greiner, and W. Scheid, Heavy Ion Collisions, Ed. by R. Bock (Amsterdam: Elsevier, 1980), 2, p. 397.

  81. H. A. Weidenmuller, “Transport theories of heavy-ion reactions” Ed. by D. Wilkinson, Progr. Part. Nucl. Phys. 3, 49 (1980).

    Article  ADS  Google Scholar 

  82. N. V. Antonenko, R. V. Dzholos, G. G. Adamyan, and A. K. Nasirov, “Nuclear-shell effects on the dynamics of deep-inelastic collisions of heavy ions,” Fiz. Elem. Chastits At. Yadra 25, 1379 (1994) [in Russian].

    Google Scholar 

  83. G. D. Adeev, I. I. Gonchar, V. V. Pashkevich, N. I. Pischasov, and O. I. Serdyuk, “Diffusion model for the distributions of fission fragments”, Fiz. Elem. Chastits At. Yadra 19, 1229 (1988) [in Russian]

    Google Scholar 

  84. G. D. Adeev, “Effects of fission dynamical characteristics on the charge distribution of fragments”, Fiz. Elem. Chastits At. Yadra 23, 1572 (1992) [in Russian].

    Google Scholar 

  85. I. I. Gonchar, “Langevin fluctuation-dissipation dynamics of the fission of excited atomic nuclei,” Fiz. Elem. Chastits At. Yadra 26, 932 (1995) [in Russian].

    Google Scholar 

  86. V. V. Volkov, “The process of complete fusion of atomic nuclei,” Fiz. Elem. Chastits At. Yadra 35, 797 (2004) [in Russian].

    Google Scholar 

  87. G. G. Adamian, N. V. Antonenko, and W. Scheid, “Characteristics of quasifission products within the dinuclear system model,” Phys. Rev. C 68, 034601 (2003).

    Article  ADS  Google Scholar 

  88. G. G. Adamian, R. V. Jolos, A. K. Nasirov, and A. I. Muminov, “Friction coefficient for deep-inelastic heavy-ion collisions,” Phys. Rev. C 56, 373 (1997).

    Article  ADS  Google Scholar 

  89. G. G. Adamian, N. V. Antonenko, and W. Scheid, “Friction and diffusion coefficients in coordinate in nonequilibrium nuclear processes,” Nucl. Phys. A 645, 376 (1999).

    Article  ADS  MATH  Google Scholar 

  90. G. D. Adeev, A. V. Karpov, P. N. Nadtochii, and D. V. Vanin, “Multidimensional stochastic approach to the fission dynamics of highly excited nuclei,” Fiz. Elem. Chastits At. Yadra 36, 731 (2005) [in Russian].

    Google Scholar 

  91. V. V. Volkov, Nuclear Reactions of Deep Inelastic Transfers (Moscow: Energoizdat, 1982).

    Google Scholar 

  92. D. H. E. Gross and H. Kalinowski, “Friction model of heavy-ion collisions,” Phys. Rep. 45, 175 (1978).

    Article  ADS  Google Scholar 

  93. M. G. Itkis, V. N. Okolovich, A. Ya. Rusanov, and G. N. Smirenkin, “Symmetric and asymmetric fission of nuclei lighter than thorium,” Fiz. Elem. Chastits At. Yadra 19, 701 (1988) [in Russian]

    Google Scholar 

  94. M. G. Itkis and A. Ya. Rusanov, “Fission of heated nuclei in reactions with heavy ions: Statistical and dynamical aspects,” Fiz. Elem. Chastits At. Yadra 29, 389 (1998) [in Russian].

    Google Scholar 

  95. J. O. Newton, “Nuclear fission induced by heavy ions,” Fiz. Elem. Chastits At. Yadra 21, 821 (1990) [in Russian].

    Google Scholar 

  96. S. T. Belyaev and V. G. Zelevinskii, “Niels Bohr and physics of atomic nuclei,” Usp. Fiz. Nauk 147, 210 (1985).

    Article  Google Scholar 

  97. D. L. Hill and J. A. Wheeler, “Nuclear constitution and the interpretation of fission phenomena,” Phys. Rev. 89, 1102 (1953).

    Article  ADS  MATH  Google Scholar 

  98. M. Dasgupta, D. J. Hinde, N. Rowley, and A. M. Stefanini, “Measuring barriers to fusion,” Ann. Rev. Nucl. Part. Sci. 48, 401 (1998).

    Article  ADS  Google Scholar 

  99. H. Esbensen, “Fusion and zero-point motions,” Nucl. Phys. A 352, 147 (1981).

    Article  ADS  Google Scholar 

  100. H. Esbensen, J. Wu, and G. F. Bertsch, “Subbarrier fusion and dynamical deformations,” Nucl. Phys. A 411, 275 (1983).

    Article  ADS  Google Scholar 

  101. H. Hagino, N. Rowley, and A. T. Kruppa, “A program for coupled-channels calculations with all order couplings for heavy-ion fusion reactions,” Comput. Phys. Comm. 123, 143 (1999).

    Article  ADS  MATH  Google Scholar 

  102. H. Esbensen, “Sensitivity to multi-phonon excitations in heavy-ion fusion reactions,” Phys. Rev. C 72, 054607 (2005).

    Article  ADS  Google Scholar 

  103. H. Esbensen and C. L. Jiang, “Indications of a shallow potential in 48Ca + 96Zr fusion reactions,” Phys. Rev. C 79, 064619 (2009).

    Article  ADS  Google Scholar 

  104. S. Misicu and H. Esbensen, “Signature of shallow potentials in deep sub-barrier fusion reactions,” Phys. Rev. C 75, 034606 (2007).

    Article  ADS  Google Scholar 

  105. H. Esbensen and S. Misicu, “Hindrance of 16O + 208Pb fusion at extreme sub-barrier energies,” Phys. Rev. C 76, 054609 (2007).

    Article  ADS  Google Scholar 

  106. A. Diaz-Torres, D. J. Hinde, M. Dasgupta, G. J. Milburn, and J. A. Tostevin, “Dissipative quantum dynamics in low-energy collisions of complex nuclei,” Phys. Rev. C 78, 064604 (2008)

    Article  ADS  Google Scholar 

  107. A. Diaz-Torres, “Absence of decoherence in the complex-potential approach to nuclear scattering,” Phys. Rev. C 81, 041603(R) (2010)

  108. A. Diaz-Torres, “Coupled-channels density-matrix approach to low-energy nuclear collision dynamics: A technique for quantifying quantum decoherence effects on reaction observables,” Phys. Rev. C 82, 054617 (2010).

    Article  ADS  Google Scholar 

  109. T. Ichikawa, K. Hagino, and A. Iwamoto, “Signature of smooth transition from sudden to adiabatic states in heavy-ion fusion reactions at deep sub-barrier energies,” Phys. Rev. Lett. 103, 202701 (2009).

    Article  ADS  Google Scholar 

  110. P. Grange and H. A. Weidenmüller, “Fission probability and the nuclear friction constant,” Phys. Lett. B 96, 26 (1980)

    Article  ADS  Google Scholar 

  111. P. Grange, Qing Li-Jang, and H. A. Weidenmüller, “Induced nuclear fission viewed as a diffusion process: Transients,” Phys. Rev. C 27, 2063 (1983).

    Article  ADS  Google Scholar 

  112. Z. Jing-Shang and H. A. Weidenmüller, “Stationary diffusion over a multidimensional potential barrier: A generalization of Kramers’ formula,” J. Stat. Phys. 34, 191 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  113. P. Grange, “Effects of transients on particle emission prior to fission in a transport description of the fission process,” Nucl. Phys. A 428, 37 (1984).

    Article  ADS  Google Scholar 

  114. G. D. Adeev and V. V. Pashkevich, “Theory of macroscopic fission dynamics,” Nucl. Phys. A 502, 405 (1989).

    Article  ADS  Google Scholar 

  115. H. Delagrange, C. Gregoire, F. Scheuter, and Y. Abe, “Dynamical decay of nuclei at high temperature: Competition between particle emission and fission decay,” Z. Phys. A 323, 437 (1986).

    ADS  Google Scholar 

  116. E. Strumberger, K. Ditrich, and K. Pomorski, “A more detailed calculation of particle evaporation and fission of compound nuclei,” Nucl. Phys. A 529, 522 (1991).

    Article  ADS  Google Scholar 

  117. F. Haake and R. Reibold, “Strong damping and lowtemperature anomalies for the harmonic oscillator,” Phys. Rev. A 32, 2462 (1985).

    Article  ADS  Google Scholar 

  118. B. L. Hu, J. P. Paz, and Y. Zhang, “Quantum Brownian motion in a general environment: Exact master equation with nonlocal dissipation and colored noise,” Phys. Rev. D 45, 2843 (1992).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  119. R. Karrlein and H. Grabert, “Exact time evolution and master equations for the damped harmonic oscillator,” Phys. Rev. E 55, 153 (1997).

    Article  ADS  Google Scholar 

  120. Z. Kanokov, Yu. V. Palchikov, G. G. Adamian, N. V. Antonenko, and W. Scheid, “Non-Markovian dynamics of quantum systems. I. Formalism and transport coefficients,” Phys. Rev. E 71, 016121 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  121. Yu. V. Palchikov, Z. Kanokov, G. G. Adamian, N. V. Antonenko, and W. Scheid, “Non-Markovian dynamics of quantum systems. II. Decay rate, capture, and pure states,” Phys. Rev. E 71, 016122 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  122. Sh. A. Kalandarov, Z. Kanokov, G. G. Adamian, and N. V. Antonenko, “Transport coefficients of a quantum system interacting with a squeezed heat bath,” Phys. Rev. E 74, 011118 (2006)

    Article  ADS  Google Scholar 

  123. Z. Kanokov, G. G. Adamian, and N. V. Antonenko, “Influence of external magnetic field on dynamics of open quantum systems,” Phys. Rev. E 75, 031115 (2007).

    Article  ADS  Google Scholar 

  124. G. G. Adamyan, Z. Kanokov, and V. V. Sargsyan, “Quantum non-Markovian stochastic equations”, Theor. Math. Phys. 145, 1443 (2005).

    Article  MATH  Google Scholar 

  125. V. V. Sargsyan, Z. Kanokov, G. G. Adamyan, and N. V. Antonenko, “Quantum non-Markovian Langevin equations and transport coefficients”, Phys. At. Nucl. 68, 2009 (2005).

    Article  Google Scholar 

  126. V. V. Sargsyan, Z. Kanokov, G. G. Adamyan, and N. V. Antonenko, “Quantum non-Markovian Langevin equations and transport coefficients for an inverted oscillator”, Theor. Math. Phys. 156, 1331 (2008).

    Article  MATH  Google Scholar 

  127. V. V. Sargsyan, Z. Kanokov, G. G. Adamian, and N. V. Antonenko, “Quantum non-Markovian Langevin formalism for heavy ion reactions near the Coulomb barrier,” Phys. Rev. C 77, 024607 (2008).

    Article  ADS  Google Scholar 

  128. V. V. Sargsyan, Yu. V. Palchikov, Z. Kanokov, G. G. Adamian, and N. V. Antonenko, “Coordinatedependent diffusion coefficients: Decay rate in open quantum systems,” Phys. Rev. A 75, 062115 (2007).

    Article  ADS  Google Scholar 

  129. V. V. Sargsyan, Yu. V. Palchikov, Z. Kanokov, G. G. Adamian, and N. V. Antonenko, “Decay rate with coordinate-dependent diffusion coefficients,” Physica A 386, 36 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  130. V. V. Sargsyan, G. G. Adamian, N. V. Antonenko, and D. Lacroix, “Non-Markovian dynamics with fermions,” Phys. Rev. A 90, 022123 (2014).

    Article  ADS  Google Scholar 

  131. D. Lacroix, V. V. Sargsyan, G. G. Adamian, and N. V. Antonenko, “Description of non-Markovian effect in open quantum system with the discretized environment method,” Eur. Phys. J B 88, 89 (2015).

    Article  ADS  Google Scholar 

  132. G. Lindblad, “On the generators of quantum dynamical semigroups,” Comm. Math. Phys. 48, 119 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  133. G. Lindblad, “Brownian motion of a quantum harmonic oscillator,” Rep. Math. Phys. 10, 393 (1976).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  134. H. Dekker, “Classical and quantum mechanics of the damped harmonic oscillator,” Phys. Rep. 80, 1 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  135. A. Isar, A. Sandulescu, H. Scutaru, E. Stefanescu, and W. Scheid, “Open quantum systems,” Int. J. Mod. Phys. E 3, 635 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  136. G. G. Adamian, N. V. Antonenko, and W. Scheid, “Model of competition between fusion and quasifission in reactions with heavy nuclei,” Nucl. Phys. A 618, 176 (1997).

    Article  ADS  Google Scholar 

  137. N. V. Antonenko, E. A. Cherepanov, A. K. Nasirov, V. B. Permjakov, and V. V. Volkov, “Competition between complete fusion and quasi-fission in reactions between massive nuclei. The fusion barrier,” Phys. Lett. B 319, 425 (1993)

    Article  ADS  Google Scholar 

  138. N. V. Antonenko, E. A.Cherepanov, A. K. Nasirov, V. B. Permjakov, and V. V. Volkov, “Compound nucleus formation in reactions between massive nuclei: Fusion barrier,” Phys. Rev. C 51, 2635 (1995).

    Article  ADS  Google Scholar 

  139. G. G. Adamian, N. V. Antonenko, S. P. Ivanova, and W. Scheid, “Problems in description of fusion of heavy nuclei in the two-center shell model approach,” Nucl. Phys. A 646, 29 (1999)

    Article  ADS  Google Scholar 

  140. G. G. Adamian, N. V. Antonenko, S. P. Ivanova, and W. Scheid, “Analysis of survival probability of superheavy nuclei,” Phys. Rev. C 62, 064303 (2000).

    Article  ADS  Google Scholar 

  141. G. G. Adamian, N. V. Antonenko, W. Scheid, and V. V. Volkov, “Treatment of competition between complete fusion and quasifission in collisions of heavy nuclei,” Nucl. Phys. A 627, 361 (1997)

    Article  ADS  Google Scholar 

  142. G. G. Adamian, N. V. Antonenko, W. Scheid, and V. V. Volkov, “Fusion cross sections for superheavy nuclei in the dinuclear system concept,” Nucl. Phys. A 633, 409 (1998).

    Article  ADS  Google Scholar 

  143. G. G. Adamian, N. V. Antonenko, and W. Scheid, “Isotopic dependence of fusion cross sections in reactions with heavy nuclei,” Nucl. Phys. A 678, 24 (2000)

    Article  ADS  Google Scholar 

  144. G. G. Adamian, N. V. Antonenko, and W. Scheid, “Unexpected isotopic trends in synthesis of superheavy nuclei,” Phys. Rev. C 69, 014607 (2004)

    Article  ADS  Google Scholar 

  145. G. G. Adamian, N. V. Antonenko, and W. Scheid, “Possibilities of synthesis of new superheavy nuclei in actinide-based fusion reactions,” Phys. Rev. C 69, 044601 (2004).

    Article  ADS  Google Scholar 

  146. A. S. Zubov, G. G. Adamian, N. V. Antonenko, S. P. Ivanova, and W. Scheid, “Competition between evaporation channels in neutron-deficient nuclei,” Phys. Rev. C 68, 014616 (2003)

    Article  ADS  Google Scholar 

  147. A. S. Zubov, G. G. Adamian, N. V. Antonenko, S. P. Ivanova, and W. Scheid, “Survival probability of superheavy nuclei,” Phys. Rev. C 65, 024308 (2002).

    Article  ADS  Google Scholar 

  148. E. A. Cherepanov, “Synthesis of superheavy elements within the dinuclear-system concept,” Preprint E7- 99-27, JINR (Joint Institute for Nuclear Research), Dubna, 1999 [in Russian].

    Google Scholar 

  149. R. V. Jolos, A. I. Muminov, and A. K. Nasirov, “The role of the entrance channel in the fusion of massive nuclei,” Eur. Phys. J. A 4, 245 (1999)

    Article  ADS  Google Scholar 

  150. G. Giardina, S.Hofmann, A. I. Muminov, and A. K. Nasirov, “Effect of the entrance channel on the synthesis of superheavy elements,” Eur. Phys. J. A 8, 205 (2000)

    Article  ADS  Google Scholar 

  151. G. Fazio, G. Giardina, A. Lamberto, A. I. Muminov, A. K. Nasirov, F. Hanappe, and L. Stuttge, “The influence of the entrance channel dynamics on the evaporation residue formation,” Eur. Phys. J. A 22, 75 (2004).

    Article  ADS  Google Scholar 

  152. G. G. Adamian, N. V. Antonenko, and W. Scheid, “Clustering effects wthin the dinuclear model,” Lect. Notes Phys. 848, 165 (2012).

    Article  ADS  Google Scholar 

  153. Sh. A. Kalandarov, G. G. Adamyan, and N. V. Antonenko, “Emission of heavy clusters in lowenergy nuclear reactions,” Fiz. Elem. Chastits At. Yadra 43, 1589 (2012) [in Russian].

    Google Scholar 

  154. R. A. Kuzyakin, V. V. Sargsyan, G. G. Adamian, and N. V. Antonenko, “Probability of passing through a parabolic barrier and thermal decay rate: Case of linear coupling both in momentum and in coordinate,” Phys. Rev. A 84, 032117 (2011).

    Article  ADS  Google Scholar 

  155. R. A. Kuzyakin, V. V. Sargsyan, G. G. Adamian, and N. V. Antonenko, “Peculiarities of parabolic-barrier penetrability and thermal decay rate with the quantum diffusion approach,” Phys. Rev. A 83, 062117 (2011).

    Article  ADS  Google Scholar 

  156. J. Ankerhold and E. Pollak, “Dissipation can enhance quantum effects,” Phys. Rev. E 75, 041103 (2007).

    Article  ADS  Google Scholar 

  157. H. Hofmann, “A quantal transport theory for nuclear collective motion: The merits of a locally harmonic approximation,” Phys. Rep. 284, 137 (1997)

    Article  ADS  Google Scholar 

  158. H. Hofmann and D. Kiderlen, “A self-consistent treatment of damped motion for stable and unstable collective modes,” Int. J. Mod. Phys. E 7, 243 (1998).

    Article  ADS  Google Scholar 

  159. V. V. Dodonov and V. I. Man’ko, “Density matrices and Wigner functions of quaqiclassical quantum systems,” Trudy Fiz. Inst. im. P.N. Lebedeva, Akad. Nauk SSSR 167, 7 (1986) [in Russian].

    Google Scholar 

  160. P. Hanggi, P. Talkner, and M. Borcovec, “Reaction- Rate theory: Fifty years after Kramers,” Rev. Mod. Phys. 62, 251 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  161. H. A. Kramers, “Brownian motion in a field of force and the diffusion model of chemical reactions,” Physica A 7, 284 (1940).

    MathSciNet  MATH  Google Scholar 

  162. C. Rummel and H. Hofmann, “Influence of microscopic transport coefficients on the formation probabilities for super-heavy elements,” Nucl. Phys. A 727, 24 (2003).

    Article  ADS  MATH  Google Scholar 

  163. J.-D. Bao and Y.-Z. Zhuo, “Investigation on anomalous diffusion for nuclear fusion reactions,” Phys. Rev. C 67, 064606 (2003).

    Article  ADS  Google Scholar 

  164. S. Ayik, B. Yilmaz, A. Gokalp, O. Yilmaz, and N. Takigawa, “Quantum statistical effects on fusion dynamics of heavy ions,” Phys. Rev. C 71, 054611 (2005)

    Article  ADS  Google Scholar 

  165. N. Takigawa, S. Ayik, K. Washiyama, and S. Kimura, “Quantum effect in the diffusion along a potential barrier: Comments on the synthesis of superheavy elements,” Phys. Rev. C 69, 054605 (2004).

    Article  ADS  Google Scholar 

  166. V. V. Sargsyan, Z. Kanokov, G. G. Adamian, N. V. Antonenko, and W. Scheid, “Capture process in nuclear reactions with a quantum master equation,” Phys. Rev. C 80, 034606 (2009)

    Article  ADS  Google Scholar 

  167. V. V. Sargsyan, Z. Kanokov, G. G. Adamian, N. V. Antonenko, and W. Scheid, “Interaction times in the 136Xe + 136Xe and 238U + 238U reactions with a quantum master equation,” Phys. Rev. C 80, 047603 (2009).

    Article  ADS  Google Scholar 

  168. R. A. Kuzyakin, V. V. Sargsyan, G. G. Adamyan, and N. V. Antonenko, “Quantum diffusion description of the subbarrier-capture process in heavy-ion reactions”, Phys. At. Nucl. 75, 439 (2012).

    Article  Google Scholar 

  169. G. G. Adamian, N. V. Antonenko, R. V. Jolos, S. P. Ivanova, and O. I. Melnikova, “Effective nucleus-nucleus potential for calculation of potential energy of a dinuclear system,” Int. J. Mod. Phys. E 5, 191 (1996).

    Article  ADS  Google Scholar 

  170. A. B. Migdal, Theory of Finite Fermi Systems and Nuclear Properties (Moscow: Nauka, 1983) [in Russian].

    Google Scholar 

  171. K. Washiyama, D. Lacroix, and S. Ayik, “One-body energy dissipation in fusion reactions from mean-field theory,” Phys. Rev. C 79, 024609 (2009)

    Article  ADS  Google Scholar 

  172. S. Ayik, K. Washiyama, and D. Lacroix, “Fluctuation and dissipation dynamics in fusion reactions from a stochastic mean-field approach,” Phys. Rev. C 79, 054606 (2009).

    Article  ADS  Google Scholar 

  173. A. R. Barnett and J. S. Lilley, “Interaction of alpha particles in the lead region near the Coulomb barrier,” Phys. Rev. C 9, 2010 (1974).

    Article  ADS  Google Scholar 

  174. D. J. Hinde, M. Dasgupta, N. Herrald, R. G. Neilson, J. O. Newton, and M. A. Lane, “Isotopic dependence of fusion barrier energies in reactions forming heavy elements,” Phys. Rev. C 75, 054603 (2007).

    Article  ADS  Google Scholar 

  175. W. Loveland, D. Peterson, A. M. Vinodkumar, P. H. Sprunger, D. Shapira, J. F. Liang, G. A. Souliotis, D. J. Morrissey, and P. Lofy, “Fusion enhancement in the 38S + 208Pb reaction,” Phys. Rev. C 74, 044607 (2006).

    Article  ADS  Google Scholar 

  176. R. Bock, Y. T. Chu, M. Dakowski, A. Gobbi, E. Grosse, A. Olmi, H. Sann, D. Schwalm, U. Lynen, W. Muller, S. Bjornholm, H. Esbensen, W. Wolfli, and E. Morenzoni, “Dynamics of the fusion process,” Nucl. Phys. A 388, 334 (1982).

    Article  ADS  Google Scholar 

  177. A. J. Pacheco, J. O. Fernandez Niello, D. E. DiGregorio, M. di Tada, J. E. Testoni, Y. Chan, E. Chavez, S. Gazes, E. Plagnol, and R. G. Stokstad, “Capture reactions in the 40,48Ca + 197Au and 40,48Ca + 208Pb systems,” Phys. Rev. C 45, 2861 (1992).

    Article  ADS  Google Scholar 

  178. E. V. Prokhorova, A. A. Bogachev, M. G. Itkis, I. M. Itkis, G. N. Knyazheva, N. A. Kondratiev, E. M. Kozulin, L. Krupa, Yu. Ts. Oganessian, I. V. Pokrovsky, V. V. Pashkevich, and A. Ya. Rusanov, “The fusion–fission and quasi-fission processes in the reaction 48Ca + 208Pb at energies near the Coulomb barrier,” Nucl. Phys. A 802, 45 (2008).

    Article  ADS  Google Scholar 

  179. R. S. Naik, W. Loveland, P. H. Sprunger, A. M. Vinodkumar, D. Peterson, C. L. Jiang, S. Zhu, X. Tang, E. F. Moore, and P. Chowdhury, “Measurement of the fusion probability PCN for the reaction of 50Ti with 208Pb,” Phys. Rev. C 76, 054604 (2007).

    Article  ADS  Google Scholar 

  180. H.-G. Clerc, J. G. Keller, C.-C. Sahm, K.-H. Schmidt, H. Schulte, and D. Vermeulen, “Fusion-fission and neutron-evaporation-residue cross-sections in 40Ar- and 50Ti-induced fusion reactions,” Nucl. Phys. A 419, 571 (1984).

    Article  ADS  Google Scholar 

  181. H. Q. Zhang, J. Xu, Z. Liu, J. Lu, M. Ruan, K. Xu, “Anomalous anisotropies of fission fragments for the 16O + 232Th sub-barrier fusion-fission reaction,” Phys. Rev. C 42, 1086 (1990).

    Article  ADS  Google Scholar 

  182. K. Langanke and S. E. Koonin, “The 12C 16O reaction at stellar energies,” Nucl. Phys. A 410, 334 (1983)

    Article  ADS  Google Scholar 

  183. A. Redder, H. W. Becker, C. Rolfs, H. P. Trautvetter, T.R. Donoghue, T. C. Rinckel, J. W. Hammer, and K. Langanke, “The 12C 16O cross section at stellar energies,” Nucl. Phys. A 462, 385 (1987).

    Article  ADS  Google Scholar 

  184. R. A. Kuzyakin, V. V. Sargsyan, G. G. Adamian, N. V. Antonenko, E. E. Saperstein, and S. V. Tolokonnikov, “Isotopic trends of capture cross section and mean-square angular momentum of the captured system,” Phys. Rev. C 85, 034612 (2012).

    Article  ADS  Google Scholar 

  185. S. A. Fayans, S. V. Tolokonnikov, E. L. Trykov, and D. Zawischa, “Nuclear isotope shifts within the local energy-density functional approach,” Nucl. Phys. A 676, 49 (2000).

    Article  ADS  Google Scholar 

  186. S. V. Tolokonnikov and E. E. Saperstein, “Description of superheavy nuclei on the basis of a modified version of the DF3 energy functional”, Phys. At. Nucl. 73, 1684 (2010).

    Article  Google Scholar 

  187. E. E. Saperstein and S. V. Tolokonnikov, “Self-consistent theory of finite Fermi systems and radii of nuclei”, Phys. At. Nucl. 74, 1277 (2011).

    Article  Google Scholar 

  188. L. F. Canto, P. R. S. Gomes, J. Lubian, L. C. Chamon, and E. Crema, “Disentangling static and dynamic effects of low breakup threshold in fusion reactions,” J. Phys. G 36, 015109 (2009)

    Article  ADS  Google Scholar 

  189. L. F. Canto, P. R. S. Gomes, J. Lubian, L. C. Chamon, and E. Crema, “Dynamic effects of breakup on fusion reactions of weakly bound nuclei,” Nucl. Phys. A 821, 51 (2009)

    Article  ADS  Google Scholar 

  190. P. R. S. Gomes, J. Lubian, B. Paes, V. N. Garcia, D. S. Monteiro, I. Padron, J. M. Figueira, A. Arazi, O. A. Capurro, L. Fimiani, A. E. Negri, G. V. Marti, J. O. Fernandez Niello, A. Gomez-Camacho, and L. F. Canto, “Nearbarrier fusion, breakup and scattering for the 9Be + 144Sm system,” Nucl. Phys. A 828, 233 (2009).

    Article  ADS  Google Scholar 

  191. G. G. Adamian, N. V. Antonenko, L. A. Malov, G. Scamps, and D. Lacroix, “Effects of angular dependence of surface diffuseness in deformed nuclei on Coulomb barrier,” Phys. Rev. C 90, 034322 (2014)

    Article  ADS  Google Scholar 

  192. G. Scamps, D. Lacroix, G. G. Adamian, and N. V. Antonenko, “Polarization of nuclear surface in deformed nuclei,” Phys. Rev. C 88, 064327 (2013).

    Article  ADS  Google Scholar 

  193. V. V. Sargsyan, G. G. Adamian, N. V. Antonenko, W. Scheid, and H. Q. Zhang, “Effects of nuclear deformation and neutron transfer in capture processes, and fusion hindrance at deep sub-barrier energies,” Phys. Rev. C 84, 064614 (2011).

    Article  ADS  Google Scholar 

  194. R. A. Kuzyakin, V. V. Sargsyan, G. G. Adamyan, and N. V. Antonenko, “Total and partial capture cross sections in reactions with deformed nuclei at energies near and below the Coulomb barrier,” Phys. At. Nucl. 76, 716 (2013).

    Article  Google Scholar 

  195. S. Raman, C. W. Nestor, and P. Tikkanen, “Transition probability from the ground to the first-excited 2+ state of even-even nuclides,” Atom. Data Nucl. Data Tables 78, 1 (2001).

    Article  ADS  Google Scholar 

  196. D. Ackermann, L. Corradi, D. R. Napoli, C. M. Petrache, P. Spolaore, A. M. Stefanini, F. Scarlassara, S. Beghini, G. Montagnoli, G. F. Segato, and C. Signorini, “Subbarrier fusion of 16O + 112Cd: Cross sections and mean angular momenta,” Nucl. Phys. A 575, 374 (1994).

    Article  ADS  Google Scholar 

  197. M. Beckerman, M. Salomaa, A. Sperduto, J. D. Molitoris, and A. DiRienzo, “Sub-barrier fusion of 58,64Ni with 64Ni and 74Ge,” Phys. Rev. C 25, 837 (1982).

    Article  ADS  Google Scholar 

  198. R. G. Stokstad, Y. Eisen, S. Kaplanis, D. Pelte, U. Smilansky, and I. Tserruya, “Fusion of 16O + 148,150,152,154Sm at sub-barrier energies,” Phys. Rev. C 21, 2427 (1980).

    Article  ADS  Google Scholar 

  199. A. H. Wuosmaa, R. R. Betts, B. B. Back, M. P. Carpenter, H. Esbensen, P. B. Fernandez, B. G. Glagola, Th. Happ, R. V. F. Janssens, T. L. Khoo, E. F. Moore, F. Scarlassara, and Ph. Benet, “Gamma-ray multiplicity distributions in 16O + 152Sm fusion near and below the Coulomb barrier,” Phys. Lett. B 263, 23 (1991).

    Article  ADS  Google Scholar 

  200. J. R. Leigh, J. J. M. Bokhorst, D. J. Hinde, and J. O. Newton, “Observation of sub-barrier fusion enhancement due to negative hexadecapole deformations?,” J. Geom. Phys. 14, L55 (1988).

    Article  ADS  Google Scholar 

  201. P. D. Shidling, N. M. Badiger, S. Nath, R. Kumar, A. Jhingan, R. P. Singh, P. Sugathan, S. Muralithar, N. Madhavan, A. K. Sinha, Pal Santanu, S. Kailas, S. Verma, K. Kalita, S. Mandal, R. Singh, B. R. Behera, K. M. Varier, and M. C. Radhakrishna, “Fission hindrance studies in 200Pb: Evaporation residue cross section and spin distribution measurements,” Phys. Rev. C 74, 064603 (2006).

    Article  ADS  Google Scholar 

  202. S. K. Hui, C. R. Bhuinya, A. K. Ganguly, N. Madhavan, J. J. Das, P. Sugathan, D. O. Kataria, S. Murlithar, T. Baby Lagy, Vandana Tripathi, Akhil Jhingan, A. K. Sinha, P. V. Madhusudhana Rao, N. V. S. V. Prasad, A. M. Vinodkumar, R. Singh, M. Thoennessen, and G. Gervais, “Spin and excitation energy dependence of fission survival for the 19F + 175Lu system,” Phys. Rev. C 62, 054604 (2000).

    Article  ADS  Google Scholar 

  203. M. L. Halbert, J. R. Beene, D. C. Hensley, K. Honkanen, T. M. Semkow, V. Abenante, D. G. Sarantites, and Z. Li, “Angular momentum effects in subbarrier fusion of 64Ni + 100Mo,” Phys. Rev. C 40, 2558 (1989).

    Article  ADS  Google Scholar 

  204. D. Ackermann, B. B. Back, R. R. Betts, M. Carpenter, L. Corradi, S. M. Fischer, R. Ganz, S. Gil, G. Hackman, D. J. Hofman, R. V. F. Janssens, T. L. Khoo, G. Montagnoli, V. Nanal, F. Scarlassara, M. Schlapp, D. Seweryniak, A. M. Stefanini, and A. H. Wuosmaa, “Spin distributions for 64Ni + 100Mo with the Argonne/Notre Dame BGO-array,” Nucl. Phys. A 630, 442 (1998).

    Article  ADS  Google Scholar 

  205. R. Kossakowski, J. Jastrzebski, P. Rymuza, W. Skulski, A. Gizon, S. Andre, J. Genevey, J. Gizon, and V. Barci, “Heavy residues following 5–10 MeV/nucleon 12C- and 14N-induced reactions on Sm and Pr targets,” Phys. Rev. C 32, 1612 (1985).

    Article  ADS  Google Scholar 

  206. R. V. F. Janssens, R. Holzmann, W. Henning, T. L. Khoo, K. T. Lesko, G. S. F. Stephans, D. C. Radford, A. M. Van Den Berg, W. Kuhn, and R. M. Ronningen, “Evaporation residue cross sections and average neutron multiplicities in the 64Ni + 92Zr and 12C + 144Sm reactions leading to 156Er,” Phys. Lett. B 181, 16 (1986).

    Article  ADS  Google Scholar 

  207. D. Abriola, A. A. Sonzogni, M. di Tada, A. Etchegoyen, M. C. Etchegoyen, J. O. Fernandez Niello, S. Gil, A. O. Macchiavelli, A. J. Pacheco, R. Piegaia, and J. E. Testoni, “Fusion and elastic scattering for the 12C + 144Sm system at energies near to the Coulomb barrier,” Phys. Rev. C 46, 244 (1992).

    Article  ADS  Google Scholar 

  208. A. M. Stefanini, L. Corradi, D. Ackermann, A. Facco, F. Gramegan, H. Moreno, L. Mueller, D. R. Napoli, G. F. Prete, P. Spolaore, S. Beghini, D. Fabris, G. Montagnoli, G. Nebbia, J. A. Ruiz, G. F. Segato, C. Signorini, and G. Viesti, “Cross sections and mean angular momenta for 64Ni + 92,96Zr fusion near and below the Coulomb barrier,” Nucl. Phys. A 548, 453 (1992).

    Article  ADS  Google Scholar 

  209. G. Duchêne, P. Romain, F. A. Beck, Ph. Benet, D. Disdier, B. Haas, B. Lott, V. Rauch, F. Scheibling, J. P. Vivien, S. K. Basu, E. Bozek, K. Zuber, D. Di Gregorio, and J. Fernandez-Niello, “Angular momentum distributions for 16O + 144Nd,” Phys. Rev. C 47, 2043 (1993).

    Article  ADS  Google Scholar 

  210. A. Charlop, J. Bierman, Z. Drebi, A. Garcia, D. Prindle, A. A. Sonzogni, R. Vandenbosch, D. Ye, S. Gil, F. Hasenbalg, J. E. Testoni, D. Abriola, M. di Tada, A. Etchegoyen, M. C. Berisso, J. O. Fernandez-Niello, and A. J. Pacheco, “Absence of anomalous entrance channel effects in sub-barrier heavy ion fusion,” Phys. Rev. C 49, R1235 (1994).

  211. A. M. Vinodkumar, W. Loveland, P. H. Sprunger, D. Peterson, J. F. Liang, D. Shapira, R. L. Varner, C. J. Gross, and J. J. Kolata, “Capture cross sections for the near symmetric 144Sn + 96Zr reaction,” Phys. Rev. C 74, 064612 (2006).

    Article  ADS  Google Scholar 

  212. A. M. Stefanini, “Systematics of heavy-ion fusion near the barrier,” Nucl. Phys. A 538, 195 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Kuzyakin.

Additional information

Original Russian Text © R.A. Kuzyakin, V.V. Sargsyan, G.G. Adamian, N.V. Antonenko, 2017, published in Fizika Elementarnykh Chastits i Atomnogo Yadra, 2017, Vol. 48, No. 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzyakin, R.A., Sargsyan, V.V., Adamian, G.G. et al. Large-amplitude nuclear motion formulated in terms of dissipation of quantum fluctuations. Phys. Part. Nuclei 48, 158–209 (2017). https://doi.org/10.1134/S1063779617010130

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779617010130

Navigation